Math, asked by riya06649, 9 months ago

Evaluate (x-1/x)^2-(x+1/x)^2​

Answers

Answered by karannnn43
2

 \:  \:  \:  {(x -  \frac{1}{x} )}^{2}  -  {(x +  \frac{1}{x}) }^{2}  \\  \\  = ( {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{x} ) - ( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x} ) \\  \\  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{  {x} }  -   {x}^{2}  - \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{x}  \\  \\  =  - 2 - 2 \\  \\  =  - 4

Answered by InfiniteSoul
4

{\bold{\underline{\sf {\red{question}}}}}

Evaluate :-

 \sf ( x - \dfrac{1}{x})^2 - ( x + \dfrac{1}{x})^2

{\bold{\underline{\sf {\pink{Solution}}}}}

This can be done by 2 methods

{\bold{\blue{\boxed{\bf{1st \:method}}}}}

 \implies\sf ( x - \dfrac{1}{x})^2 - ( x + \dfrac{1}{x})^2

{\bold{\blue{\boxed{\bf{a^2 - b^2 = (a+b)(a-b) }}}}}

\sf\implies(x- \dfrac{1}{x} + x + \dfrac{1}{x})(x- \dfrac{1}{x} - x -\dfrac{1}{x})

\sf\implies( x-  \cancel\dfrac{1}{x} + x +  \cancel\dfrac{1}{x})(\cancel x- \dfrac{1}{x} - \cancel x -\dfrac{1}{ x})

\sf\implies(2 x)(\dfrac{-2}{ x})

\sf\implies(2\cancel x)(\dfrac{-2}{ \cancel x})

\sf\implies - 4

{\bold{\blue{\boxed{\bf{\dag -4}}}}}

{\bold{\green{\boxed{\bf{2nd\: method}}}}}

\sf\implies \:  \:  \:  {(x -  \frac{1}{x} )}^{2}  -  {(x +  \frac{1}{x}) }^{2}

{\bold{\green{\boxed{\bf{(x+y)^2 = x^2 + y^2 + 2xy}}}}}

{\bold{\green{\boxed{\bf{(x+y)^2 = x^2 + y^2 - 2xy}}}}}

  \\  \\  \sf\implies ( {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{x} ) - ( {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x} ) \\  \\  \sf\implies {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{  { x} }  -   {x}^{2}  - \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{x}  \\ \\  \sf\implies - 2 - 2 \\  \\  \sf\implies  - 4

{\bold{\green{\boxed{\bf{\dag - 4}}}}}

_____________________❤

THANK YOU ❤

Similar questions