Math, asked by mahi6792, 1 year ago

evaluate x^2+1/x^2 when x=3+√8​

Answers

Answered by HulkByte
3

x=3+√8

therfore 1/x= 1/(3+√8)

rationalizing it we get (3-√8)

there fore x^2 + 1/x^2 = (3+√8)^2 + (3-√8)^2

= 9 + 6√8 + 8+( 9 - 6√8 + 8)

= 9+9+8+8

= 34.


mahi6792: thanks bhai
HulkByte: welcome bhai
mahi6792: i am a girl
HulkByte: okkk welcome sister
Answered by Anonymous
0

\huge\text{\underline{Answer}}

We have

x = 3 +  \sqrt{8}

and

 \frac{1}{x}  = 3 -  \sqrt{8}

Now by using suitable identity.

\boxed{\sf{  (a + b) ^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}}

\implies (x +  \frac{1}{x} ) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}

put the value,

\implies (3 +  \sqrt{8}  + 3 -  \sqrt{8} ) ^{2} =  {x}^{2}   +  \frac{1}{ {x}^{2} }  + 2

\implies  {6}^{2}  - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

\implies 36 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

\implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34


mahi6792: thanks
Anonymous: :)
Similar questions