Math, asked by narayanbinu21, 8 months ago

evaluate x^2+1/x^2 when x = 3+root8

Answers

Answered by rajeevr06
2

Answer:

x = 3 +  \sqrt{8}

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  =  \frac{3 -  \sqrt{8} }{(3 +  \sqrt{8})(3 -  \sqrt{8} ) }  =  \frac{3 -  \sqrt{8} }{9 - 8}  = 3 -  \sqrt{8}

now,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = (x +  \frac{1}{x} ) {}^{2}  - 2 \times x \times  \frac{1}{x}  = (3 +  \sqrt{8}  + 3 -  \sqrt{8} ) {}^{2}  - 2 =  {6}^{2}  - 2 = 36 - 2 = 34 \:  \: ans.

Similar questions