Math, asked by sahidtelecom9350, 9 months ago

evaluate x^45-1/x^40-1 limx->1​

Answers

Answered by pulakmath007
9

SOLUTION

TO EVALUATE

\displaystyle \lim_{x \to 1}  \:  \: \frac{ {x}^{45} - 1 }{ {x}^{40} - 1 }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on limit that

\displaystyle \lim_{x \to a}  \:  \: \frac{ {x}^{n} -  {a}^{n} }{ x - a} = n  \: {a}^{n - 1}

EVALUATION

\displaystyle \lim_{x \to 1}  \:  \: \frac{ {x}^{45} - 1 }{ {x}^{40} - 1 }

 = \displaystyle \lim_{x \to 1}  \:  \: \frac{ \frac{ {x}^{45} - 1}{ x - 1}  }{   \frac{{x}^{40} - 1}{x - 1} }

 = \displaystyle   \:  \: \frac{\displaystyle \lim_{x \to 1} \frac{ {x}^{45} - 1}{ x - 1}  }{\displaystyle \lim_{x \to 1}   \frac{{x}^{40} - 1}{x - 1} }

 = \displaystyle   \:  \: \frac{\displaystyle \lim_{x \to 1} \frac{ {x}^{45} -  {1}^{45} }{ x - 1}  }{\displaystyle \lim_{x \to 1}   \frac{{x}^{40} -  {1}^{40} }{x - 1} }

 =   \displaystyle    \frac{45 \:  \times  {(1)}^{45 - 1} }{40 \times  {(1)}^{40 - 1} }  \:  \: (by \: above \: formula)

 = \displaystyle   \:   \frac{45 }{40 }

 = \displaystyle   \:   \frac{9 }{8 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lthe value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions
Math, 4 months ago