Math, asked by jaishrikrishna1234, 10 months ago

evaluate x^8-y^8 using identity​

Answers

Answered by amruthasuresh1977
0

Answer:

(x^4+y^4)(x^4-y^4)

Step-by-step explanation:

use identity a^2-b^2=(a+b)(a-b)

Answered by mysticd
0

 \underline { \blue { By \: Algebraic\: Identity :}}

 \boxed { \pink { a^{2} - b^{2} = ( a + b )( a - b ) }}

 Here ,\red{ x^{8} - y^{8}} \\= (x^{4})^{2} - (y^{4})^{2} \\= (x^{4} + y^{4} ) (x^{4} - y^{4} ) \\= (x^{4} + y^{4} ) [(x^{2})^{2} - (y^{2} )^{2}] \\= (x^{4} + y^{4} ) (x^{2} + y^{2} )( x^{2} - y^{2} ) \\= (x^{4} + y^{4} ) (x^{2} + y^{2} )( x + y )( x - y )

Therefore.,

 \red{Factors \:of \: x^{8} - y^{8}}

 \green {= (x^{4} + y^{4} ) (x^{2} + y^{2} )( x + y )( x - y ) }

•••♪

Similar questions