Math, asked by Usernamesarelame, 11 days ago

Evaluate: x^a+b * x^b+c * x^c+a/(x^a * x^b * x^c)^2

Attachments:

Answers

Answered by MrImpeccable
12

ANSWER:

To Evaluate:

 \displaystyle \dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^a \times x^b \times x^c)^2}

Solution:

We are given that,

\displaystyle \implies\dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^a \times x^b \times x^c)^2}

We know that,

\hookrightarrow m^p\times m^q = m^{p+q}

So,

 \displaystyle \implies\dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^a \times x^b \times x^c)^2}

 \displaystyle \implies\dfrac{x^{a+b+b+c+c+a}}{(x^{a+b+c})^2}

We know that,

\hookrightarrow (m^p)^q= m^{pq}

So,

 \displaystyle \implies\dfrac{x^{2(a+b+c)}}{(x^{a+b+c})^2}

 \displaystyle \implies\dfrac{x^{2(a+b+c)}}{x^{2(a+b+c)}}

Cancelling numerator and denominator,

 \displaystyle \implies\dfrac{x^{2(a+b+c)}}{x^{2(a+b+c)}}

 \displaystyle \implies\bf 1

Hence,

 \displaystyle \implies\bf\dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^a \times x^b \times x^c)^2}=1

Formula Used:

  • \hookrightarrow m^p\times m^q = m^{p+q}
  • \hookrightarrow (m^p)^q= m^{pq}
Similar questions