Math, asked by tina392, 5 hours ago

Evaluate x^p/x^p + x^q + 1/xp-q + 1​

Answers

Answered by 12thpáìn
40

Evaluate

  • \sf\dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{x^{p-q }+ 1}

Solution

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{x^{p-q }+ 1}}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{(x^{p} \times  {x}^{ - q} +)  + 1}}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{ \bigg(x^{p} \times \dfrac{1}{  {x}^{ - q} } \bigg)  + 1}}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{  \dfrac{ {x}^{p} }{ {x}^{q} }  + 1}}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{  \dfrac{ {x}^{p} }{ {x}^{q} }  + 1}}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{  \dfrac{ {x}^{p} +  {x}^{q}  }{ {x}^{q} } }}

{ \sf~~~~~\implies \dfrac{x^p}{x^p + x^q} +\dfrac{  {x}^{q} }{   {x}^{p}  +  {x}^{q}  }}

{ \sf~~~~~\implies { \cancel{\dfrac{x^p + {x}^{q} }{x^p + x^q} }}}^{1}

{ \sf~~~~~\implies 1} \\  \\  \\

\huge~~~~~~~~~~~~~~~~~~~~~\\\hline{   }\\

\sf\dfrac{x^p}{x^p + x^q} +\dfrac{ 1}{x^{p-q }+ 1}    \: \bf= 1

\huge~~~~~~~~~~~~~~~~~~~~~\\\hline{   }

  • \gray{\tiny\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}
Answered by rosoni28
121

\huge\boxed{\fcolorbox{blue}{lime}{question✨:}}

\tt\dfrac\red{x^p}\red{x^p + x^q} +\dfrac\red{ 1}\red{x^{p-q }+ 1}

\huge\pink{\boxed{\green {\mathbb{\overbrace {\underbrace{\fcolorbox{red}{aqua}{\underline{\pink{†◖ \: ⚆SOLTUON⚆◗†}}}}}}}}}

{ \tt~~~~~\implies \dfrac\blue{x^p}\blue{x^p + x^q} +\dfrac\blue{ 1}\blue{x^{p-q }+ 1}}

 {\tt~~~~~\implies \dfrac \pink{x^p} \pink{x^p + x^q} +\dfrac \pink{ 1} \pink{(x^{p} \times {x}^{ - q} +) + 1}}

{ \tt~~~~~\implies \dfrac \orange{x^p} \orange{x^p + x^q} +\dfrac \orange{ 1} \orange{ \bigg(x^{p} \times \dfrac \orange{1} \orange{  \orange \orange{x}^ \orange{ - q} } \bigg) \orange + \orange1}}

{ \sf~~~~~\implies \dfrac\red{x^p}\red{x^p + x^q} +\dfrac\red{ 1}\red{ \dfrac \red{ {x}^{p} }\red{ {x}^{q} } + 1}}

{ \tt~~~~~\implies \dfrac\purple{x^p} \purple{x^p + x^q} +\dfrac \purple{ 1}{ \dfrac \purple{  \purple{x}^{p} } \purple{ {x}^{q} }  \purple+  \purple1}}

{ \mathtt~~~~~\implies \dfrac \green{x^p} \green{x^p + x^q} +\dfrac \green{ 1}{ \dfrac \green{ {x}^{p} + {x}^{q} } \green{ {x}^{q} } }}

{ \textsf~~~~~\implies \dfrac \red{x^p} \pink{x^p + x^q} +\dfrac \blue{ {x}^{q} } \purple{ {x}^{p} + {x}^{q} }}

{ \sf~~~~~\implies { \cancel{\dfrac \pink{x^p + {x}^{q} } \blue{x^p + x^q} }}}^{1}

\begin{gathered} \blue{ \tt~~~~~\implies 1} \\ \\ \\ \end{gathered}

 \tt \huge\dfrac \purple{x^p} \pink{x^p + x^q} +\dfrac \blue{ 1} \green{x^{p-q }+ 1} \: \bf

 \huge\pink{\boxed{\green{\mathtt{\overbrace{\underbrace{\fcolorbox{red}{aqua}{\underline{\pink{⚘thanks ⚘}}}}}}}}}

{\huge{\boxed{\tt{\color {red}{hope \: it \: helps \: you❀✿°᭄}}}}}

{\Huge{ \red{\underline{\underline{\bf{\maltese \pink{  \: @Rosoni28 }}}}}}}

\huge \color{blue} \boxed{\colorbox{lime}{------------×-----------}}

Similar questions