Math, asked by king592, 2 months ago

evaluate x³-1/x³ if x-1/x=6​

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

⇒ x - 1/x = 6.

As  we know that,

Cubing on both sides of the equation, we get.

⇒ (x - 1/x)³ = (6)³.

⇒ x³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = 216.

⇒ x³ - 3x + 3/x - 1/x³ = 216.

⇒ x³ - 3(x - 1/x) - 1/x³ = 216.

Put the value of x - 1/x = 6 in the equation, we get.

⇒ x³ - 3(6) - 1/x³ = 216.

⇒ x³ - 18 - 1/x³ = 216.

⇒ x³ - 1/x³ = 216 + 18.

x³ - 1/x³ = 234.

Answered by BrainlyArnab
1

 \huge \boxed { \sf \blue{ {x}^{3}  -  \frac{1}{ {x}^{3} }  = 234}}

Step-by-step explanation:

Q.

 \sf \: evaluate :  {x}^{3}  -  \frac{1}{ {x}^{3} }   \\  \sf \: if \: x -  \frac{1}{x}  =  6

Solution -

 \sf \: x -  \frac{1}{x}  = 6 \\  \\   \sf=  >  {(x -  \frac{1}{x}) }^{3}  =  {6}^{3} ....(cubing \: both \: sides) \\  \\  \sf =  >  {x}^{3}  - ( { \frac{1}{x}) }^{3}  - 3( \cancel{x \: }) (\frac{1}{ \cancel{x \: }} )(x -  \frac{1}{ x} ) = 216 \\  \\  \{ \sf \: by \: the \: formula \: ( {a - b)}^{3}  = {a}^{3}   -  {b}^{3}  - 3ab(a - b) \} \\  \\  \sf =  >  {x}^{3}  -  \frac{1}{x {}^{3} }  - 3(6) = 216 \\  \\ \sf  =   >  {x}^{3}  -  \frac{1}{ {x}^{3} }   - 18 = 216 \\  \\ \sf  =  >  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 216 + 18 \\  \\  =  >  \sf \underline{ {x}^{3}  -  \frac{1}{ {x}^{3} }  = 234}

hope it helps.

Similar questions