Math, asked by indilladernier, 3 months ago

Evaluate ∫xlog(x + 3)dx.​

Answers

Answered by abhicks
1

Answer:

∫x log(x + 3)

Important formula:

∫udv = uv - ∫vdu

Solution:

let \: u =  log(x + 3)    \\  =  > du =  \frac{1}{x + 3}

dv = x

 =  > v = ∫x

 =  > v =   \frac{ {x}^{2} }{2}

To find:

∫ log(x + 3) x

uv =   \frac{ {x}^{2} }{2}  log(x + 3)

vdu =  \frac{ {x}^{2} }{2}  \times  \frac{1}{x + 3}  =  \frac{ {x}^{2} }{2(x + 3)}

∫vdu = ∫  \frac{ {x}^{2} }{2(x + 3)}

 = ∫ \frac{ {x}^{2}  - 9 + 9}{2(x + 3)}

 =  \frac{1}{2} ∫ \frac{ {x}^{2} - 9 }{x + 3} +  \frac{1}{2}  ∫ \frac{9}{x + 3}

 =  \frac{1}{2} ∫ \frac{(x + 3)(x - 3)}{x + 3}  +  \frac{9}{2} ∫ \frac{1}{x + 3}

 =(  \frac{1}{2} ∫x - 3) +  \frac{9}{2}  log(x + 3)

 =  \frac{1}{2} ( \frac{ {x}^{2} }{2}  - 3x) +  \frac{9}{2}  log(x + 3)

uv - ∫vdu

 =  \frac{ {x}^{2} }{2}  log(x + 3)  -  \frac{1}{2} ( \frac{ {x}^{2} }{2}  - 3x) -  \frac{9}{2}  log(x + 3)

 =  \frac{ {x}^{2} - 9 }{2}  log(x + 3)  -  \frac{1}{2} (  \frac{ {x}^{2} }{2}  - 3x)

Similar questions