Math, asked by samykuv, 5 months ago

evaluate y= ( 1-tanx /1+tanx ) then show that dy/dx= -2 /1+sin 2x

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \frac{1  -  \tan(x) }{1 +  \tan(x) }  \\

 y =  \frac{ \tan(  \frac{\pi}{4} )  -   \tan(x) }{1 +  \tan( \frac{\pi}{4} ) . \tan(x) }  \\

  \implies \: y =   \tan( \frac{\pi}{4}  - x )  \\

Differentiating both sides, we get,

 \frac{dy}{dx}  =  -   \sec ^{2} ( \frac{\pi}{4}  - x)  \\

 \frac{dy}{dx}  = -   \frac{1}{ \cos^{2} (  \frac{\pi}{4}  - x ) }  \\

 \frac{dy}{dx}  =  -  \frac{2}{1 +  \cos( \frac{\pi}{2}  - 2x) }  \\

 \frac{dy}{dx}  =  -  \frac{2}{1 +  \sin(2x) }  \\

Similar questions