Math, asked by errambhairavaprasad, 19 days ago

Evaluate y^ 2 b^ 2 - x^ 2 a^ 2 . where x = a tan 0 and y = b sec theta

Answers

Answered by chandan454380
0

Answer:

The answer is -a^2b^2=-(ab)^2

Step-by-step explanation:

Given

x=a\tan\theta\Rightarrow \tan\theta=\frac{x}{a} and y=b\sec\theta\Rightarrow \sec\theta=\frac{y}{b}

Now we know that \sec^2\theta-\tan^2\theta=1

                              \Rightarrow (\frac{x}{a})^2-(\frac{y}{b})^2=1

                              \Rightarrow \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\\Rightarrow \frac{b^2x^2-a^2y^2}{a^2b^2}=1\\\Rightarrow b^2x^2-a^2y^2=a^2b^2\\\Rightarrow a^2y^2-b^2x^2=-a^2b^2

Similar questions