Math, asked by vikashjain4, 1 year ago

Evaluate :- y = log( base {2+√3} ) [ √(7 - √48)] .​

Answers

Answered by amt54321
0

Answer:

-y = {sqrt(7 - 4 sqrt(3)) log(3.732 bp (base pairs))}

Step-by-step explanation:

Answered by Anonymous
6

Answer:

y = -1.

Step-by-step explanation:

 \sf \because y =  log_{2 +  \sqrt{3} }( \sqrt{7 -  \sqrt{48} } ) .

Now, we have

 \sf \because \sqrt{7 -  \sqrt{48} } .  \\  \\  =  \sf \sqrt{7 -  \sqrt{16 \times 3} }. \\  \\  =  \sf \sqrt{7 - 4 \sqrt{3} } . \\  \\    =  \sf \sqrt{ {2}^{2}  +  {( \sqrt{3} )}^{2}  - 2(2)( \sqrt{3} )}  . \\  \\  \sf =  \sqrt{ {(2 -  \sqrt{3}) }^{2} }  \:  \: or \:  \:  \sqrt{ {( \sqrt{3} - 2) }^{2} } . \\  \\  \sf =  |2 -  \sqrt{3} |  \:  \: or \:  \:  | \sqrt{3} - 2 | . \\  \\  =  \sf2 -  \sqrt{3}  \:  \: or \:  \:  - ( \sqrt{3 }  - 2). \\  \\  \sf = (2 -  \sqrt{3} ).

Now,

 \sf \because y =  log_{2 +  \sqrt{3} }( \sqrt{7 -  \sqrt{48} } ) . \\  \\  \sf  \implies y =  log_{2 +  \sqrt{3} }( 2 -  \sqrt{3} ) . \\  \\  \implies \sf(2 -  \sqrt{3} ) =  {(2  +  \sqrt{3} )}^{y} . \\  \\  \tiny \bigg( \tt \because(2 +  \sqrt{3} )(2 -  \sqrt{3} ) = 1. \implies(2 -  \sqrt{3} ) =  {(2 +  \sqrt{3} )}^{ - 1} . \bigg) \\  \\  \sf \implies {(2 +  \sqrt{3}) }^{ - 1}  =  {(2 +  \sqrt{3}) }^{y} . \\  \\  \boxed{ \therefore \pink{ \it y  =  - 1.}}

Hence, it is solved.


Anonymous: Amazing ❤"
Anonymous: Thanks
vikashjain4: Thanks sir
Similar questions