Math, asked by nikkee20, 1 year ago



evaluate (z-1/6)(z+6)

Answers

Answered by charliejaguars2002
7

Answer:

\large\boxed{z^2+\frac{35z}{6}-1 }

Step-by-step explanation:

To solve this problem, first you have to use foil method formula.

Given:

(z-1/6)(z+6)

Solutions:

First, you have to use the foil method formula.

\large\boxed{\textnormal{FOIL Method Formula}}

\displaystyle (a+b)(c+d)=ac+ad+bc+bd

A=Z

B=(-1/6)

C=Z

D=6

Rewrite the whole problem down.

\displaystyle zz+z*6+(-\frac{1}{6})z+(-\frac{1}{6})*6

Change negative sign to positive sign.

\displaystyle +(-d)=-d

\displaystyle zz+6z-\frac{1}{6}z-6*\frac{1}{6}

Solve.

\displaystyle zz+6z-\frac{1}{6}z-6*\frac{1}{6}=\boxed{z^2+\frac{35z}{6}-1}

\large\boxed{z^2+\frac{35z}{6}-1}

So, the final answer is z²+35z/6-1.

Answered by Anonymous
51

AnswEr :

\Rightarrow(z -  \frac{1}{6} )(z + 6)

\Rightarrow z(z + 6) -  \frac{1}{6} (z + 6)

\Rightarrow  {z}^{2}  + 6z -  \frac{z}{6}   -   \frac{6}{6}

\Rightarrow {z}^{2}  + 6z -  \frac{z}{6}   -  1

  • Multiplying Each term by 6

\Rightarrow 6{z}^{2}  + 35z  -  6

\Rightarrow 6{z}^{2}  + 36z - z  -  6

\Rightarrow6z(z + 6) - 1(z + 6)

\Rightarrow(6z - 1)(z + 6)

\huge{\red{\ddot{\smile}}}

Similar questions