Math, asked by vv04354, 5 months ago

evaluation the following sin^2 42°-sin^2 12°=​

Answers

Answered by sanjana8350
0

Answer:

sin^(242°)−sin^(212°)

Decimal Form:

0.49878202

Step-by-step explanation:

please like my answer

Answered by sonal192007
1

Answer:

sin^2(42)-sin^2(12)=\frac{\sqrt{5}+1 }{8}

Step-by-step explanation:

using trigonometric identity:

sin^2 A-sin^2 B=sin(A-B)sin(A+B)

where, A=42 and B=12

substitute in the formula,

sin^2(42)-sin^2(12)=sin(42-12)sin(42+12)

sin^2(42)-sin^2(12)=sin(30)sin(54)

sin^2(42)-sin^2(12)=\frac{1 }{2} ×sin(54)

we know,sin(54)=\frac{\sqrt{5}+1 }{4}

sin^2(42)-sin^2(12)=\frac{1}{2} × \frac{\sqrt{5}+1 }{4}

sin^2(42)-sin^2(12)=\frac{\sqrt{5}+1 }{8}

therefore, sin^2(42)-sin^2(12)=\frac{\sqrt{5}+1 }{8}

hope this helps and please mark me as brainliest

Similar questions