Math, asked by shadowofenstin, 1 year ago

evalute if x=1/√3+√2 find x+1/x

Answers

Answered by DaAnonymous
2
Hey friend,
Here is the answer you were looking for:
x =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\ x =  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\   by \: using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ \sqrt{3} -  \sqrt{2}  }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\  =  \frac{ \sqrt{3} -  \sqrt{2}  }{3 - 2}  \\  \\ x =  \sqrt{3}  -  \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  = \frac{ \sqrt{3}  +  \sqrt{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{ \sqrt{3}  +  \sqrt{2} }{3 - 2}  \\  \\  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{2}  \\  \\ x +  \frac{1}{x}  = ( \sqrt{3}   -  \sqrt{2} ) + ( \sqrt{3}  +  \sqrt{2} ) \\  \\  x +  \frac{1}{x}  =  \sqrt{3}  -  \sqrt{2}  +  \sqrt{3}  +  \sqrt{2}  \\  \\ x +  \frac{1}{x}  =  \sqrt{3}  +  \sqrt{3}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{3}

Note: If you have any doubt regarding to the answer....

Then you can ask in comment section.

Hope this helps!!!!

Thanks....
☺☺
Similar questions