Math, asked by pkgupta957690, 5 months ago

evalute integration of x sinx dx with limit 0to pi/2​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int_{0}^{ \frac{\pi}{2} } x \sin(x) dx \\

Applying integration by parts, and then putting the limits,

  [ x  \int \sin(x) dx ]_{0}^{ \frac{\pi}{2} }    -  \int_{0} ^{ \frac{\pi}{2} } ( \frac{d}{dx} (x) \int \sin(x) dx)dx \\

 [ - x \cos(x) ]_{0}^{ \frac{\pi}{2} }   +  \int_{0}^{ \frac{\pi}{2} }  \cos(x) dx \\

 [ - x \cos(x) ]_{0}^{ \frac{\pi}{2} }   +   [ \sin(x) ] _{0}^{ \frac{\pi}{2} }   \\

 = ( -  \frac{\pi}{2}  \cos( \frac{\pi}{2}) + (0) \cos(0)  )  + ( \sin( \frac{\pi}{2}  )-  \sin(0) )

 = 1

Similar questions