Math, asked by sureshabhisheko48, 7 months ago

evalute sin(2sin inverse 0.6​

Attachments:

Answers

Answered by BrainlyPopularman
9

Question :

 \bf \implies Evaluate\:\:\sin \{2\sin^{ - 1}(0.6) \}

ANSWER :–

Value = 0.96

EXPLANATION :

GIVEN :

 \bf\sin \{2\sin^{ - 1}(0.6) \}

TO FIND :

Value = ?

SOLUTION :

• Let the function –

 \bf \implies y = \sin \{2\sin^{ - 1}(0.6) \}

• We know that –

 \bf \implies 2\sin^{ - 1}(x)  = { \sin }^{ - 1}(2x \sqrt{1 -  {x}^{2} })

• So that –

 \bf \implies y = \sin \{\sin^{ - 1} \{2(0.6) \sqrt{1 -  {(0.6)}^{2} }  \} \}

 \bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{1 - 0.36 }  \} \}

 \bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.64}\} \}

 \bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.8 \times 0.8}\} \}

 \bf \implies y = \sin \{\sin^{ - 1} \{(1.2) (0.8) \}

 \bf \implies y = \sin \{\sin^{ - 1} \{(0.96) \}

 \bf \implies \large{ \boxed{ \bf y =0.96}}

Answered by sanchitachauhan241
8

\huge\pink{\underline{\underline{\bf{\blue{Question :–}}}}}

\bf \implies Evaluate\:\:\sin \{2\sin^{ - 1}(0.6) \}

\huge\pink{\underline{\underline{\bf{\blue{Answer:–}}}}}

\pink{Value \  = \ 0.96}

\purple{EXPLANATION :–}

\green{GIVEN :–}

\bf\sin \{2\sin^{ - 1}(0.6) \}

\green{To \  FIND :–}

\red{Value \  = \  ?}

\bold\purple{SOLUTION :–}

\red{Let \ the \ function –}

\bf \implies y = \sin \{2\sin^{ - 1}(0.6) \}

\red{We \  know \  that}

\bf \implies 2\sin^{ - 1}(x) = { \sin }^{ - 1}(2x \sqrt{1 - {x}^{2} })

\purple{So \  that –}

\bf \implies y = \sin \{\sin^{ - 1} \{2(0.6) \sqrt{1 - {(0.6)}^{2} } \} \}

\bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{1 - 0.36 } \} \}

\bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.64}\} \}

\bf \implies y = \sin \{\sin^{ - 1} \{(1.2) \sqrt{0.8 \times 0.8}\} \}

\bf \implies y = \sin \{\sin^{ - 1} \{(1.2) (0.8) \}

\bf \implies y = \sin \{\sin^{ - 1} \{(0.96) \}

\bf \implies \large{ \boxed{ \bf y =0.96}}

Similar questions