Math, asked by attarihussain24, 6 months ago

evalute
 \frac{2 cos²60⁰ + 3 sec²30⁰ - tan²45⁰}{sin²45⁰ + cos²45⁰}

Answers

Answered by BrainlyPopularman
15

TO FIND :

The value of :–

\\\implies \bf\dfrac{2 cos^{2}60^{\circ} + 3 sec^{2}30^{\circ} - tan^{2}45^{\circ}}{sin^{2}45^{\circ}+ cos^{2}45^{\circ}} = ?\\

SOLUTION :

• Let –

 \\ \bf \implies P = \dfrac{2 cos^{2}60^{\circ}+ 3 sec^{2}30^{\circ} - tan^{2}45^{\circ}}{sin^{2}45^{\circ}+ cos^{2}45^{\circ}} \\

• We know that –

 \\ \bf { \huge{.}} \:  \cos( {60}^{ \circ} )  =  \dfrac{1}{2} \\

 \\ \bf { \huge{.}} \:  \sec( {30}^{ \circ} )  =  \dfrac{2}{ \sqrt{3} } \\

 \\ \bf { \huge{.}} \:  \tan( {45}^{ \circ} )  =1\\

 \\ \bf { \huge{.}} \:  \sin( {45}^{ \circ} )  = \dfrac{1}{ \sqrt{2} } \\

 \\ \bf { \huge{.}} \:  \cos( {45}^{ \circ} )  = \dfrac{1}{ \sqrt{2} } \\

• Now put the values –

 \\ \bf \implies P = \dfrac{2  { \bigg(  \dfrac{1}{2} \bigg)}^{2}  + 3   { \bigg(  \dfrac{2}{ \sqrt{3} } \bigg)}^{2}  - 1}{{ \bigg(  \dfrac{1}{ \sqrt{2} } \bigg)}^{2}+ { \bigg(  \dfrac{1}{ \sqrt{2} } \bigg)}^{2}} \\

 \\ \bf \implies P = \dfrac{2  \times  {\dfrac{1}{4}}+ 3 \times  \dfrac{4}{3} - 1}{ \dfrac{1}{2} +\dfrac{1}{2}} \\

 \\ \bf \implies P = \dfrac{{\dfrac{1}{2}}+ 4- 1}{1} \\

 \\ \bf \implies P = {\dfrac{1}{2}}+3\\

 \\ \bf \implies P = {\dfrac{1 + 6}{2}}\\

 \\ \large \implies{ \boxed{ \bf P = {\dfrac{7}{2}}}}\\

Answered by Anonymous
20

{\pink{To \: Find:-}}

• The value of :–

\begin{gathered}\\\implies \bf\dfrac{2 cos^{2}60^{\circ} + 3 sec^{2}30^{\circ} - tan^{2}45^{\circ}}{sin^{2}45^{\circ}+ cos^{2}45^{\circ}} = ?\\\end{gathered}

\huge\underline\red{Solution:-}

Let:-

\begin{gathered} \\ \bf \implies P = \dfrac{2 cos^{2}60^{\circ}+ 3 sec^{2}30^{\circ} - tan^{2}45^{\circ}}{sin^{2}45^{\circ}+ cos^{2}45^{\circ}} \\ \end{gathered}

• We know that:-

\begin{gathered} \\ \bf { \huge{.}} \: \cos( {60}^{ \circ} ) = \dfrac{1}{2} \\ \end{gathered}

\begin{gathered} \\ \bf { \huge{.}} \: \sec( {30}^{ \circ} ) = \dfrac{2}{ \sqrt{3} } \\ \end{gathered}

\begin{gathered} \\ \bf { \huge{.}} \: \tan( {45}^{ \circ} ) =1\\ \end{gathered}

\begin{gathered} \\ \bf { \huge{.}} \: \sin( {45}^{ \circ} ) = \dfrac{1}{ \sqrt{2} } \\ \end{gathered}

\begin{gathered} \\ \bf { \huge{.}} \: \cos( {45}^{ \circ} ) = \dfrac{1}{ \sqrt{2} } \\ \end{gathered}

Now put the values:-

\begin{gathered} \\ \bf \implies P = \dfrac{2 { \bigg( \dfrac{1}{2} \bigg)}^{2} + 3 { \bigg( \dfrac{2}{ \sqrt{3} } \bigg)}^{2} - 1}{{ \bigg( \dfrac{1}{ \sqrt{2} } \bigg)}^{2}+ { \bigg( \dfrac{1}{ \sqrt{2} } \bigg)}^{2}} \\ \end{gathered}

\begin{gathered} \\ \bf \implies P = \dfrac{2 \times {\dfrac{1}{4}}+ 3 \times \dfrac{4}{3} - 1}{ \dfrac{1}{2} +\dfrac{1}{2}} \\ \end{gathered}

\begin{gathered} \\ \bf \implies P = \dfrac{{\dfrac{1}{2}}+ 4- 1}{1} \\ \end{gathered}

\begin{gathered} \\ \bf \implies P = {\dfrac{1}{2}}+3\\ \end{gathered}

\begin{gathered} \\ \bf \implies P = {\dfrac{1 + 6}{2}}\\ \end{gathered}

\begin{gathered} \\ \large \implies{ \boxed{ \bf P = {\dfrac{7}{2}}}}\\ \end{gathered}

______________________________________

Similar questions