Math, asked by Sudipa5781, 4 months ago

Evalute :\:\lim_{x\to1} \: \dfrac{ {x}^{3}  - 1}{ {x}^{2}  - 6x + 5}

Answers

Answered by amansharma264
14

EXPLANATION.

\sf \implies  \lim_{x \to 1} \dfrac{x^{3} -1}{x^{2} -6x + 5}

As we know that,

Put the value of x = 1 in equation and check their form, we get.

\sf \implies  \lim_{x\to 1} \dfrac{1^{3} - 1}{1 - 6(1) + 5}

\sf \implies  \lim_{x\to 1} \dfrac{0}{0}

As we can see that,

it is in the form of 0/0.

So we can factorizes the equation, we get.

⇒ x² - 6x + 5.

Factorizes into middle term split, we get.

⇒ x² - 5x - x + 5.

⇒ x(x - 5) - 1(x - 5).

⇒ (x - 1)(x - 5).

⇒ x³ - 1.

We can write as : x³ - 1³.

it is in the form of a³ - b³.

Formula of : a³ - b³.

⇒ a³ - b³ = (a - b)(a² + ab + b²).

⇒ x³ - 1³ = (x - 1)(x² + x + 1).

Put the value in the equation, we get.

\sf \implies  \lim_{x\to 1} \dfrac{(x - 1)(x^{2} +x + 1)}{(x - 1)(x - 5)}

\sf \implies  \lim_{x\to 1} \dfrac{(x^{2} +x+1)}{(x - 5)}

Put the value of x = 1 in equation, we get.

\sf \implies  \lim_{x\to 1} \dfrac{(1)^{2} + 1 + 1}{(1 - 5)}

\sf \implies  \lim_{x\to 1} \dfrac{3}{-4}

\sf \implies  \lim_{x\to 1} = \dfrac{-4}{3}

                                                                                                                       

MORE INFORMATION.

If function takes any of the following form, 0/0 & ∞/∞ then L'HOSPITAL'S RULE is applies.

\sf \implies  \lim_{x\to a} \dfrac{f(x)}{g(x)} = \sf \implies  \lim_{x\to a} \dfrac{f'(x)}{g'(x)}

NOTE :

L'HOSPITAL'S RULE can be repeated required number of times in the same question.

Answered by Anonymous
6

\implies \sf \:\lim_{x\to1} \: \dfrac{ {x}^{3} - 1}{ {x}^{2} - 6x + 5}

\implies \sf \:\lim_{x\to1} \: \dfrac{ {1}^{3} - 1}{ {x}^{2} - 6(1) + 5}

\implies \sf \:\lim_{x\to1} \: \dfrac{0}{0}

By factorising the equation.

We get,

\implies \sf x^2 - 6x + 5

\implies \sf x^2 - 5x - x + 5

\implies \sf x(x-5) - 1(x-5)

\implies \sf (x-1)(x-5)

\implies \sf x^3 - 1

Now, using a³ - b³.

\implies \sf a^3 - b^3 = (a-b)(a^2 + ab + b^2)

\implies \sf x^3 - 1^3 = (x-1)(x^2 + x + 1)

Now, putting the value in the equation.

We get,

\implies \sf \:\lim_{x\to1} \: \dfrac{(x-1)(x^2 + x + 1)}{(x-1)x-5)}

\implies \sf \:\lim_{x\to1} \: \dfrac{(x^2 + x + 1)}{(x-5)}

Now,

Putting the value of x = 1 in equation.

We get,

\implies \sf \:\lim_{x\to1} \: \dfrac{(1)^2 + 1 +1}{(x-5)}

\implies \sf \:\lim_{x\to1} \: \dfrac{3}{-4}

\implies \bf \:\lim_{x\to1} \: = \dfrac{-4}{3}

Similar questions