Math, asked by mansha297, 4 months ago

EVALUTE THE ANSWER

Attachments:

Answers

Answered by MagicalBeast
5

Given :

\sf \bullet \:  \:   { (\dfrac{ \:  {x}^{b} }{{x}^{c} } )}^{(b + c + a)}  \times  { (\dfrac{ \:  {x}^{c} }{{x}^{a} } )}^{( c + a + b)}  \times  { (\dfrac{ \:  {x}^{a} }{{x}^{b} } )}^{(a + b + c )}

Identity used :

\sf \bullet  \:  \dfrac{ {p}^{m} }{ {q}^{n}  } \:   =  \:  {p}^{m}  -  {q}^{n}  \\  \\ \sf \bullet  \:  \:  {p}^{m}  \times  {p}^{n}  =  \:  {p}^{(m + n)}  \\  \\ \sf \bullet \:  \:   {( {p}^{m}) }^{n}  \:  =  \:  {p}^{m \times n}  \\  \\  \sf \bullet \:  {p}^{0}  = 1

Solution :

\sf  \implies \:  \:   { ( {x}^{(b - c)}  )}^{(b + c + a)}  \times  { ( {x}^{(c - a)}  )}^{( c + a + b)}  \times  { (  {x}^{(a - b)}  )}^{(a + b + c )}  \\  \\ \sf  \implies \:  \:   {x}^{(b - c)(b + c + a)} \:  \:   \times   \:  \: {x}^{(c - a)( c + a + b)} \:  \:   \times   \:  \:  {x}^{(a - b)(a + b + c)} \\  \\  \sf \implies \:  {x}^{( \:  \: (b - c)(b + a + c) \:  +  \:( c - a)(c + a + b) \:   + \: (a - b)(a + b + c) \:  \:  \: ) }  \\  \\ \sf \bullet \:  rearranging \: (a + b + c) \\   \\   \sf \implies \:  {x}^{( \:  \: (b - c)(a + b  + c) \:  +  \:( c - a)( a + b + c) \:   + \: (a - b)(a + b + c) \:  \:  \: )}  \\  \\  \sf \bullet \:  taking \: (a + b  + c) \: common \:  \\  \\  \sf \implies \:  {x}^{( \:  \: (a + b + c) \times (b - c \:  +  \: c - a \:  +  \: a - b) \:  \: )}  \\  \\  \sf \implies \:  {x}^{(a + b + c) \times \: 0}  \\  \\ \sf \implies \:  {x}^{ \: 0} \\  \\ \sf \implies \bold{1}

ANSWER : 1

Similar questions