Evalute the following using suitable identity (i) (99)^3, (ii) (102)^3, (iii) (998)^3
Answers
Answered by
8
these sums will be solved using the identity
(a+b) ^3 = a^3 + b^3 + 3ab (a + b)
for eg., in 1st one =
(100 - 1)
here u will have to use (a - b)^3 = ^3 - b^3 - 3ab ( a-b )
hope it helps
bye have a grt day buddy
also mark me as a brainliest if this answer helps.....
(a+b) ^3 = a^3 + b^3 + 3ab (a + b)
for eg., in 1st one =
(100 - 1)
here u will have to use (a - b)^3 = ^3 - b^3 - 3ab ( a-b )
hope it helps
bye have a grt day buddy
also mark me as a brainliest if this answer helps.....
Answered by
32
:
(i) (99)³
(100 - 1)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (100)³ - (1)³ - 3*100*1 (100 - 1)
= 1000000 - 1 - 300*99
= 1000000 - 29701
= 970299
.
(90+9)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (90)³ + (9)³ + 3*90*9 (90+9)
= 729000 + 729 + 2430*99
= 729000 + 729 + 240570
= 970299
➖➖➖➖➖➖➖➖➖➖➖
(ii) (102)³
(100+2)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (100)³ + (2)³ + 3*100*2 (100+2)
= 1000000 + 8 + 600*102
= 1000000 + 8 + 61200
= 1061208
.
(110-8)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (110)³ - (8)³ - 3*110*8 (110-8)
= 1331000 - 512 - 2640*102
= 1331000 - 512 - 269280
= 1331000 - 269792
= 1061208
➖➖➖➖➖➖➖➖➖➖➖
(iii) (998)³
(1000-2)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (1000)³ - (2)³ - 3*1000*2 (1000-2)
= 1000000000 - 8 - 6000*998
= 1000000000 - 8 - 5988000
= 1000000000 - 5988008
= 99401192
.
(990+8)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (990)³ + (8)³ + 3*990*8 (990+8)
= 970299000 + 512 + 23760*998
= 970299000 + 512 + 23712480
= 99401192
(i) (99)³
(100 - 1)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (100)³ - (1)³ - 3*100*1 (100 - 1)
= 1000000 - 1 - 300*99
= 1000000 - 29701
= 970299
.
(90+9)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (90)³ + (9)³ + 3*90*9 (90+9)
= 729000 + 729 + 2430*99
= 729000 + 729 + 240570
= 970299
➖➖➖➖➖➖➖➖➖➖➖
(ii) (102)³
(100+2)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (100)³ + (2)³ + 3*100*2 (100+2)
= 1000000 + 8 + 600*102
= 1000000 + 8 + 61200
= 1061208
.
(110-8)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (110)³ - (8)³ - 3*110*8 (110-8)
= 1331000 - 512 - 2640*102
= 1331000 - 512 - 269280
= 1331000 - 269792
= 1061208
➖➖➖➖➖➖➖➖➖➖➖
(iii) (998)³
(1000-2)³
[ using (x-y)³ = x³ - y³ - 3xy(x-y) ]
= (1000)³ - (2)³ - 3*1000*2 (1000-2)
= 1000000000 - 8 - 6000*998
= 1000000000 - 8 - 5988000
= 1000000000 - 5988008
= 99401192
.
(990+8)³
[ using (x+y)³ = x³ + y³ + 3xy(x+y) ]
= (990)³ + (8)³ + 3*990*8 (990+8)
= 970299000 + 512 + 23760*998
= 970299000 + 512 + 23712480
= 99401192
Similar questions
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
Political Science,
1 year ago
Hindi,
1 year ago