Math, asked by Anonymous, 3 months ago

Evalute the integral integration [(Sin2x+cos2x)dx] bw units x=Pi/3 & Pi/2. Answer should be correct to 1 decimal.​

Answers

Answered by shadowsabers03
7

We're asked to evaluate,

\displaystyle\longrightarrow I=\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left(\sin(2x)+\cos(2x)\right)\ dx

\displaystyle\longrightarrow I=\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}}\sin(2x)\ dx+\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}}\cos(2x)\ dx

Put,

\longrightarrow u=2x

\longrightarrow du=2\ dx

\longrightarrow dx=\dfrac{1}{2}\ du

\longrightarrow x=\dfrac{\pi}{3}\quad\implies\quad u=\dfrac{2\pi}{3}

\longrightarrow x=\dfrac{\pi}{2}\quad\implies\quad u=\pi

Then the integral becomes,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\limits_{\frac{2\pi}{3}}^{\pi}\sin u\ du+\dfrac{1}{2}\int\limits_{\frac{2\pi}{3}}^{\pi}\cos u\ du

\displaystyle\longrightarrow I=-\dfrac{1}{2}\Big[\cos u\Big]_{\frac{2\pi}{3}}^{\pi}+\dfrac{1}{2}\Big[\sin u\Big]_{\frac{2\pi}{3}}^{\pi}

\displaystyle\longrightarrow I=-\dfrac{1}{2}\left(\cos\pi-\cos\left(\dfrac{2\pi}{3}\right)\right)+\dfrac{1}{2}\left(\sin\pi-\sin\left(\dfrac{2\pi}{3}\right)\right)

\displaystyle\longrightarrow I=-\dfrac{1}{2}\left(-1+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(0-\dfrac{\sqrt3}{2}\right)

\displaystyle\longrightarrow I=\dfrac{1-\sqrt3}{4}

\displaystyle\longrightarrow\underline{\underline{I=-0.2}}

Similar questions