Math, asked by ap5955267, 10 months ago

evalute the limit x tends to 5​

Attachments:

Answers

Answered by padmasangam88342
0

Answer:

X=5

1/x-5 - 3/x^2-7x+10

= 1/5-5 - 3/5^2 - 7×5+10

= 1/0 - 3/ 25-35+10

= 1/0 -3/0

=infinity

Answered by Anonymous
4

 \sf \purple{  \huge \underline{\fbox{ \: Solution : \:  \: }}}

At x = 5 , the value of the given function takes the form 0/0

Therefore ,

 \sf \hookrightarrow \lim _{ x\to5} \bigg ( \frac{1}{x - 5}  -  \frac{3}{ {x}^{2} - 7x + 10 }   \bigg) \\  \\  \sf \hookrightarrow \lim _{ x\to5} \bigg  ( \frac{1}{x - 5}  -  \frac{3}{(x - 2)(x - 5)} \bigg)  \\  \\ \sf \hookrightarrow  \lim _{ x\to5}  \bigg(  \frac{(x - 2) - 3}{(x - 2)(x - 5)}  \bigg) \\  \\  \sf \hookrightarrow  \lim _{ x\to5}  \bigg(\frac{x - 5}{ {x}^{2}  - 7x  + 10}  \bigg)

Now , evaluating the function at 5 , we get

 \sf \hookrightarrow \frac{5 - 5}{ {(5)}^{2} - 7(5)   + 10}  \\  \\   \sf \hookrightarrow \frac{0}{25 - 35 + 10}  \\  \\  \sf \hookrightarrow 0

Similar questions