Math, asked by samarthya2480, 4 months ago

Evaluvate intagiral (x³+2x²+3)sinx dx

Answers

Answered by mathdude500
6

Evaluate :-

 \rm \:  \int \: ( {x}^{3}  +  {2x}^{2}  + 3)sinx \: dx

─━─━─━─━─━─━─━─━─━─━─

Method used :-

Integration by Parts

Integration by Parts is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.

✏️See the rule:

∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

 \boxed{ \red{ \rm \: \int \:sinx \: dx \:  =  - cosx + c}}

 \boxed{ \red{ \rm \: \int \:cosx \: dx \:  = sinx + c}}

 \boxed{ \red{ \rm \: \dfrac{d}{dx}  \: {x}^{n}  \:  = n {x}^{n - 1} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

 \rm :  \implies \:Let \: I \:  =  \rm \:  \int \: ( {x}^{3}  +  {2x}^{2}  + 3)sinx \: dx

Using formula of Integration By Parts, we get

 \rm :I = ({x}^{3}  +  {2x}^{2}  + 3) \int \: sinxdx \:  -    \int \: (\dfrac{d}{dx} ({x}^{3}  +  {2x}^{2}  + 3) \int \: sinxdx)

\rm :I =  - ({x}^{3}  +  {2x}^{2}  + 3)cosx  +   \int( {3x}^{2}  + 4x)cosxdx

\rm :I =  - ({x}^{3}  +  {2x}^{2}  + 3)cos \:  +  \: I_1 -  -  - (i)

where,

\rm :I_1 =  \int(3{x}^{2}  +  {4x})cosxdx

Using formula of Integration By Parts, we get

\rm :I = (3{x}^{2}  +  {4x}) \int \: cosxdx \:  -  \int \: ( \dfrac{d}{dx} (3{x}^{2}  +  {4x}) \int \: cosxdx)dx

\rm :I_1 = (3{x}^{2}  +  {4x})sinx -  \int \: (6x + 4)sinxdx

\rm :I_1 = (3{x}^{2}  +  {4x})sinx -  I_2 -  - (ii)

where,

\rm :I_2 =  \int \: (6x + 4) \: sinx \: dx

Using formula of Integration By Parts, we get

\rm :I_2 = (6x + 4)\int \:sinxdx - \int \:(\dfrac{d}{dx} (6x + 4)\int \:sinxdx)dx

\rm :I_2 =  - (6x + 4)cosx + \int \:6cosxdx

\rm :I_2 =  - (6x + 4)cosx \:  +  \: 6sinx \:  +  \: c -  -(iii)

Put value from equation (iii) in equation (ii), we get

\rm :I_1 = (3{x}^{2}  +  {4x})sinx  + (6x + 4)cosx - 6sinx - c

\rm :I_1 = (3{x}^{2}  +  {4x} - 6)sinx \:  + (6x + 4)cosx - c -  - (iv)

Now, Put value of equation (iv) in equation (i), we get

\rm :I =  - ({x}^{3}  +  {2x}^{2}  + 3)cos \:  +  \: (3{x}^{2}  +  {4x} - 6)sinx \:  + (6x + 4)cosx - c

\rm :I =  - ({x}^{3}  +  {2x}^{2}  + 3 - 6x - 4)cos \:  +  (3{x}^{2}  +  {4x} - 6)sinx \:   - c

\rm :I =  - ({x}^{3}  +  {2x}^{2}   - 6x - 1)cos \:  +  (3{x}^{2}  +  {4x} - 6)sinx \:   - c

Answered by shadowsabers03
12

We're given to evaluate,

\displaystyle\longrightarrow I=\int\left(x^3+2x^2+3\right)\sin x\ dx

\displaystyle\longrightarrow I=\int\left(x^3\sin x+2x^2\sin x+3\sin x \right)\ dx

\displaystyle\longrightarrow I=\int x^3\sin x\ dx+2\int x^2\sin x\ dx+3\int\sin x\ dx\quad\quad\dots(1)

Consider,

\displaystyle\longrightarrow I_1=\int x^3\sin x\ dx

Instead of doing integration by parts directly, here we can make use of the following if f is an algebraic function of integral power and g is trigonometric or exponential function.

\displaystyle\longrightarrow\int fg\ dx=fg_{-1}-f_1g_{-2}+f_2g_{-3}-f_3g_{-4}+f_4g_{-5}-\,\dots\,(+C)

until we get f_k=0 for some k, where,

  • f_n is n^{th} derivative of f
  • g_{-n} is n^{th} integral of g

So,

\displaystyle\longrightarrow I_1=\int x^3\sin x\ dx

\displaystyle\longrightarrow I_1=x^3(-\cos x)-3x^2(-\sin x)+6x(\cos x)-6(\sin x)+0(-\cos x)+C_1

\displaystyle\longrightarrow I_1=-x^3\cos x+3x^2\sin x+6x\cos x-6\sin x+C_1

Similarly, consider,

\displaystyle\longrightarrow I_2=\int x^2\sin x\ dx

\displaystyle\longrightarrow I_2=x^2(-\cos x)-2x(-\sin x)+2(\cos x)-0(\sin x)+C_2

\displaystyle\longrightarrow I_2=-x^2\cos x+2x\sin x+2\cos x+C_2

Consider,

\displaystyle\longrightarrow I_3=\int\sin x\ dx

\displaystyle\longrightarrow I_3=-\cos x+C_3

Then (1) becomes,

\displaystyle\begin{aligned}\longrightarrow I=\ \ &\left(-x^3\cos x+3x^2\sin x+6x\cos x-6\sin x+C_1\right)\\+\ \ &2\left(-x^2\cos x+2x\sin x+2\cos x+C_2\right)\\+\ \ &3\left(-\cos x+C_3\right)\end{aligned}

\displaystyle\longrightarrow I=\left(3x^2+4x-6\right)\sin x-\left(x^3+2x^2-6x-1\right)\cos x+\left(C_1+2C_2+3C_3\right)

Taking C_1+2C_2+3C_3=C,

\displaystyle\longrightarrow\underline{\underline{I=\left(3x^2+4x-6\right)\sin x-\left(x^3+2x^2-6x-1\right)\cos x+C}}

Similar questions