Math, asked by sonkarvishal6163, 3 months ago

Evaulate : 4 -
sin 30° +tan 45º - cosec 60°
sec 30° + cos 60° + cos 45º​

Answers

Answered by Toxicbanda
7

Correct Question:

{\sf{Evaluate:\;\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec\;60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}-\cot 45^{\circ}}}}

Answer:

\therefore{\boxed{\sf{\dfrac{43-24\sqrt{3}}{11}}}}

Step-by-step explanation:

\implies{\sf{\dfrac{\sin 30^{\circ}+\tan 45^{\circ}-cosec\;60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}-\cot 45^{\circ}}}}

Now, put the values of following,

\implies{\sf{\dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}} +\dfrac{1}{2} -1}}}

\implies{\sf{\dfrac{\dfrac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}}}{\dfrac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}}}}}

\implies{\sf{\dfrac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}}\times\dfrac{2\sqrt{3}}{4+\sqrt{3}+2\sqrt{3}}}}

\implies{\sf{\dfrac{\sqrt{3}+2\sqrt{3}-4}{4+\sqrt{3}+2\sqrt{3}}}}

\implies{\sf{\dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}}}

\implies{\sf{\dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}\times \dfrac{3\sqrt{3}-4}{3\sqrt{3}-4}}}

\implies{\sf{\dfrac{(3\sqrt{3}-4)^{2}}{(3\sqrt{3})^{2}-(4)^{2}}}}

\implies{\sf{\dfrac{27-12\sqrt{3}-12\sqrt{3}+16}{27-16}}}

\implies{\sf{\dfrac{43-24\sqrt{3}}{11}}}

\therefore{\boxed{\sf{\dfrac{43-24\sqrt{3}}{11}}}}

Answered by SuitableBoy
55

{\large{\underline{\underline{\rm{Question:-}}}}}

 \\

Q) Evaluate :

 \rm \dfrac{sin \: 30 \degree + tan \: 45 \degree - cosec \: 60 \degree}{sec \: 30  \degree + cos \: 60 \degree + cos \: 45 \degree}

 \\

{\large{\underline{\underline{\rm{Solution\checkmark}}}}}

 \\

All we have to do is to put the value of given trigonometric ratios at given angles.

We can find these values by using a trigonometric table.

{\bf{\underline{\underline{Trigonometric\:Table:}}}}

 \boxed{ \begin{array}{c |c| c |c| c |c}   \dfrac{\alpha}{ \quad \quad} & \dfrac{ \bf0 \degree}{  \quad \quad}& \dfrac{ \bf30 \degree}{ \quad \quad}& \dfrac{ \bf45 \degree}{ \quad \quad} & \dfrac{ \bf60 \degree}{ \quad \quad}& \dfrac{ \bf90 \degree}{ \quad \quad} \\  \\  \sf \: sin  \: \alpha&0&  \pink{\dfrac{1}{2}}&  \dfrac{1}{ \sqrt{2}}  & \dfrac{ \sqrt{3}}{2} &1 \\  \\  \sf \: cos \:  \alpha&1& \dfrac{ \sqrt{3} }{2}  &  \pink{\dfrac{1}{ \sqrt{2} }} &  \pink{\dfrac{1}{2}} &0 \\  \\  \sf \: tan \:  \alpha &0& \dfrac{1}{ \sqrt{3} }& \pink1& \sqrt{3} & \rm not \: defined  \\  \\  \sf \: cosec \:  \alpha& \rm \: not \: defined&2& \sqrt{2}  &  \pink{\dfrac{2}{ \sqrt{3}} }&1 \\  \\  \sf \: sec \:  \alpha  &1&  \pink{\dfrac{2}{ \sqrt{3} }}& \sqrt{2}&2  & \rm \: not \: defined\end{array}}

In this table, the required terms are coloured in pink.

Now, putting the values..

 \colon \implies \sf \:  \frac{ \frac{1}{2}  +1 -  \frac{2}{ \sqrt{3} } }{ \frac{2}{ \sqrt{3} }  +  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} } }  \\  \\  \colon \implies \:  \frac{ \frac{ \sqrt{3  }   + 2 \sqrt{3}  - 4}{2 \sqrt{3} } }{ \frac{2 \times 2 \sqrt{2}  +  \sqrt{3}  \times  \sqrt{3 \times 2}  + 2 \sqrt{3} }{2 \sqrt{3 \times 2} } }  \\  \\   \colon \implies \sf \:  \frac{ \frac{3 \sqrt{3}  - 4}{ \cancel{2 \sqrt{3}} } }{ \frac{4 \sqrt{2} + 3 \sqrt{2}  + 2 \sqrt{3}  }{ \cancel{2 \sqrt{3}}  \times  \sqrt{2} } }  \\  \\ \colon \implies \sf \:  \frac{ \sqrt{2}(3 \sqrt{3} - 4) } {7 \sqrt{2}  + 2 \sqrt{3} }   \\  \\ \colon \implies \sf \:  \frac{3 \sqrt{6}  - 4 \sqrt{2} }{(7 \sqrt{2} + 2 \sqrt{3} )}  \times   \frac{(7 \sqrt{2}  - 2 \sqrt{3} )}{(7 \sqrt{2}  - 2 \sqrt{3} )}  \\  \\  \colon \implies \sf \:  \frac{7 \sqrt{2}(3 \sqrt{6}    - 4 \sqrt{2} ) - 2 \sqrt{3} (3 \sqrt{6}  - 4 \sqrt{2} )}{ {(7 \sqrt{2}) }^{2}  -  {(2 \sqrt{3} )}^{2} }  \\  \\  \colon \implies \sf \:  \frac{42 \sqrt{3} - 56 - 18 \sqrt{2}  + 8 \sqrt{6}  }{98 - 12}  \\  \\  \colon \implies \sf \:  \frac{ \cancel2(21 \sqrt{3}  - 28 - 9 \sqrt{2}  + 4 \sqrt{6} )}{ \cancel{86}}  \\  \\  \colon \implies \boxed{ \red{ \frac{21 \sqrt{3} - 28 - 9 \sqrt{2}  + 4 \sqrt{6}  }{43} }} \:

 \\

_____________________________

Similar questions