Math, asked by taniyamalkotia, 5 months ago

evaulate integral x^2+x+1/(x+1)^2(x+2)*dx​

Answers

Answered by mathdude500
1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\sf \:  ⟼ \int\dfrac{ {x}^{2} + x + 1 }{ {(x + 1)}^{2} \: (x + 2) } dx

\large\underline\red{\bold{❥︎Step :- 1 }}

☆Using concept of Partial Fraction

\sf \:  \dfrac{ {x}^{2} + x + 1 }{ {(x + 1)}^{2} \: (x + 2) } =  \dfrac{A}{x + 1}  +  \dfrac{B}{ {(x + 1)}^{2} }  +  \dfrac{C}{x + 2} \sf \:  ⟼ \: (1)

☆On taking LCM, we get

\sf \:   {x}^{2}  + x + 1 = A(x + 1)(x + 2) + B(x + 2) + C {(x + 1)}^{2} \sf \:  ⟼(2)

\large\underline\red{\bold{❥︎Step :- 2 }}

\bf \:  ⟼ Substituting \:  'x =  - 1'  \: in \:  (2) , we \:  get

\sf \:  ⟼1 - 1 + 1 = B

\bf\implies \:B \:  =  \: 1 \: \bf \:  ⟼  \: (3)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 3 }}

\bf \:  ⟼ Substituting 'x =  - 2'  \: in  \: (2), we \:  get

\sf \:  ⟼ {( - 2)}^{2}  - 2 + 1 = C {(  - 2 + 1)}^{2}

\sf \:  ⟼4 - 2 + 1 = C

\bf\implies \:C = 3\sf \:  ⟼ \: (4)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 4 }}

\bf \:  ⟼ Substituting 'x = 0'  \: in  \:(2), \:  we  \: get

\sf \:  0 + 0 + 1 = 2A + 2B + C

☆On substituting the values of B and C, we get

\sf \:  ⟼1 = 2A + 2 + 3

\sf \:  ⟼2A =  - 4

\bf\implies \:A \:  =  \:  - 2 \: \bf \:  ⟼  \: (5)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\red{\bold{❥︎Step :- 5 }}

☆On substituting the values of A, B and C evaluated in equation (3), (4) and (5) in equation (1), we get

\sf \:  \dfrac{ {x}^{2} + x + 1 }{ {(x + 1)}^{2} \: (x + 2) } =  \dfrac{ - 2}{x + 1}  +  \dfrac{1}{ {(x + 1)}^{2} }  +  \dfrac{3}{x + 2}

\sf \:   \int\dfrac{ {x}^{2} + x + 1 }{ {(x + 1)}^{2} \: (x + 2) }dx =  \int\dfrac{ - 2}{x + 1}dx  +  \int\dfrac{1}{ {(x + 1)}^{2} }dx  +  \int\dfrac{3}{x + 2}dx

\sf \:   \int\dfrac{ {x}^{2} + x + 1 }{ {(x + 1)}^{2} \: (x + 2) }dx =  - 2 log(x + 1)  - (x + 1) + 3 log(x + 2)  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:  ⟼ \int\dfrac{1}{x} dx =  log(x)  + c \\ \bf \:  ⟼ \int {x}^{n} dx = \dfrac{ {x}^{n + 1} }{n + 1}  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions