evauluate the integral of int(cos²x sin³x)dx
Answers
PLEASE REFER TO THE ATTACHMENT...
ACTUALLY THE INTEGRATION SIGN IS NOT AVAILABLE WITH ME
SO I DID IT IN THE COPY....
EXPLANATION.
⇒ ∫(cos²x sin³x)dx.
As we know that,
we can write equation as,
⇒ ∫(cos²x sin²x.sinx)dx.
As we know that,
Formula of,
⇒ sin²x = 1 - cos²x.
Put the value in equation, we get.
⇒ ∫(cos²x.(1 - cos²x).sin(x)).dx.
⇒ ∫(1 - cos²x)cos²x.sinx.dx.
Let we assume that,
⇒ cos(x) = t.
Differentiate w.r.t x, we get.
⇒ -sin(x)dx = dt.
Put the value in the equation, we get.
⇒ ∫(1 - t²)t²(-dt).
⇒ ∫(t² - t⁴)(-dt).
⇒ ∫(t⁴ - t²)dt.
⇒ ∫t⁴(dt) - ∫t²(dt).
⇒ t⁵/5 - t³/3 + c.
Substitute the value of t = cos(x) in equation, we get.
⇒ cos⁵(x)/5 - cos³(x)/3 + c.
MORE INFORMATION.
(1) = ∫sin(x)dx = -cos(x) + c.
(2) = ∫cos(x)dx = sin(x) + c.
(3) = ∫tan(x)dx = ㏒(sec(x)) + c Or -㏒(cos(x)) + c.
(4) = ∫cot(x)dx = ㏒(sin(x)) + c.
(5) = ∫sec(x)dx = ㏒(sec(x) + tan(x)) + c Or -㏒(sec(x) - tan(x)) + c Or ㏒tan(π/4 + x/2) + c.
(6) = ∫cosec(x)dx = -㏒(cosec(x) + cot(x)) + c. Or ㏒(cosec(x) - cot(x)) + c Or ㏒tan(x/2) + c.
(7) = ∫sec(x)tan(x)dx = sec(x) + c.
(8) = ∫cosec(x)cot(x)dx = -cosec(x) + c.
(9) = ∫sec²xdx = tan(x) + c.
(10) = ∫cosec²xdx = -cot(x) + c.