Math, asked by imtiajtarafder6476, 1 year ago

Even central momemt of normal distribution formula

Answers

Answered by swadesh7
0
Since integration is not my strong suit I need some feedback on this, please:

Let YY be N(μ,σ2)N(μ,σ2), the normal distrubutionwith parameters μμ and σ2σ2. I know μμ is the expectation value and σσ is the variance of YY.

I want to calculate the nn-th central moments of YY.

The density function of YY is

f(x)=1σ2π−−√e−12(y−μσ)2f(x)=1σ2πe−12(y−μσ)2

The nn-th central moment of YY is

E[(Y−E(Y))n]E[(Y−E(Y))n]

The nn-th moment of YY is

E(Yn)=ψ(n)(0)E(Yn)=ψ(n)(0)

where ψψ is the Moment-generating function

ψ(t)=E(etX)ψ(t)=E(etX)

So I started calculating:

E[(Y−E(Y))n]=∫R(f(x)−∫Rf(x)dx)ndx=∫R∑k=0n[(nk)(f(x))k(−∫Rf(x)dx)n−k]dx=∑k=0n(nk)(∫R[(f(x))k(−∫Rf(x)dx)n−k]dx)=∑k=0n(nk)(∫R[(f(x))k(−μ)n−k]dx)=∑k=0n(nk)((−μ)n−k∫R(f(x))kdx)=∑k=0n(nk)((−μ)n−kE(Yk))


Similar questions