Every mertric space is not normed linear space give example
Answers
Answered by
0
Let VV be a vector space over the field FF. A norm
∥⋅∥:V⟶F‖⋅‖:V⟶F
on VV satisfies the homogeneity condition
∥ax∥=|a|⋅∥x∥‖ax‖=|a|⋅‖x‖
for all a∈Fa∈F and x∈Vx∈V. So the metric
d:V×V⟶F,d:V×V⟶F,
d(x,y)=∥x−y∥d(x,y)=‖x−y‖
defined by the norm is such that
d(ax,ay)=∥ax−ay∥=|a|⋅∥x−y∥=|a|d(x,y)d(ax,ay)=‖ax−ay‖=|a|⋅‖x−y‖=|a|d(x,y)
for all a∈Fa∈F and x,y∈Vx,y∈V. This property is not satisfied by general metrics. For example, let δδ be the discrete metric
δ(x,y)={1,0,x≠y,x=y.δ(x,y)={1,x≠y,0,x=y.
Then δδ clearly does not satisfy the homogeneity property of the a metric induced by a norm.
To answer your edit, call a metric
d:V×V⟶Fd:V×V⟶F
homogeneous if
d(ax,ay)=|a|d(x,y)d(ax,ay)=|a|d(x,y)
for all a∈Fa∈F and x,y∈Vx,y∈V, and translation invariant if
d(x+z,y+z)=d(x,y)d(x+z,y+z)=d(x,y)
for all x,y,z∈Vx,y,z∈V. Then a homogeneous, translation invariant metric dd can be used to define a norm ∥⋅∥‖⋅‖ by
∥x∥=d(x,0)‖x‖=d(x,0)
for all x∈Vx∈V.
∥⋅∥:V⟶F‖⋅‖:V⟶F
on VV satisfies the homogeneity condition
∥ax∥=|a|⋅∥x∥‖ax‖=|a|⋅‖x‖
for all a∈Fa∈F and x∈Vx∈V. So the metric
d:V×V⟶F,d:V×V⟶F,
d(x,y)=∥x−y∥d(x,y)=‖x−y‖
defined by the norm is such that
d(ax,ay)=∥ax−ay∥=|a|⋅∥x−y∥=|a|d(x,y)d(ax,ay)=‖ax−ay‖=|a|⋅‖x−y‖=|a|d(x,y)
for all a∈Fa∈F and x,y∈Vx,y∈V. This property is not satisfied by general metrics. For example, let δδ be the discrete metric
δ(x,y)={1,0,x≠y,x=y.δ(x,y)={1,x≠y,0,x=y.
Then δδ clearly does not satisfy the homogeneity property of the a metric induced by a norm.
To answer your edit, call a metric
d:V×V⟶Fd:V×V⟶F
homogeneous if
d(ax,ay)=|a|d(x,y)d(ax,ay)=|a|d(x,y)
for all a∈Fa∈F and x,y∈Vx,y∈V, and translation invariant if
d(x+z,y+z)=d(x,y)d(x+z,y+z)=d(x,y)
for all x,y,z∈Vx,y,z∈V. Then a homogeneous, translation invariant metric dd can be used to define a norm ∥⋅∥‖⋅‖ by
∥x∥=d(x,0)‖x‖=d(x,0)
for all x∈Vx∈V.
Similar questions