Math, asked by sunilbhangarh123, 8 months ago

Evualute(103)square by th edentity​

Answers

Answered by ItzLoveHunter
41

\huge\bf\boxed{\boxed{\underline{\red{Answer!!}}}}

EQUATION

\sf\boxed{(103)² = (100 + 3)²}

NOW :

\sf{⟹ (100 + 3)²}

By using the identity ;

\boxed{(a + b)² = a² + 2ab + b²}

  • \sf{a = 100}
  • \sf{b = 3}

Now Substituting the value ;

\sf{ ⟹ (100)² + 2(100)(3) + (3)²}

\sf{ ⟹ 10000 + 600 + 9}

\sf{ ⟹ 10609}

So the value is 10609

_____________________________________

More information ;

\boxed{(a + b)² = a² + 2ab + b²}

\boxed{(a - b)² = a² - 2ab + b²}

\boxed{a² – b² = (a + b)(a – b)}

\boxed{(x + a)(x + b) = x² + (a + b)x + ab}

\boxed{(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca}

\boxed{(a + b)³ = a³ + b³ + 3ab (a + b)}

\boxed{(a – b)³ = a³ – b³ – 3ab (a – b)}

\boxed{a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)}

Answered by Anonymous
67

Answer

EQUATION :- (103)^2

So, it will be :- (100+3)^2

How to solve this ?

  • by using the identity (a+b)^2 = a^2 + b^2 +2ab

So , here

  • a = 100
  • b = 3

Now putting the value in the above identity :-

=> (100)^2+(3)^2+2(100)(3)

=> 10000 + 9 + 600

=> 10609

The value of the equation is 10609 .

Additional information

Some other identities -

  • (a-b)^2 = a^2 + b^2 - 2ab

  • (a+b)(a-b) = a^2 - b^2

  • (X+a)(X+b) = x^2 + (a+b)X + ab

  • (X+y+z) ^2 = x^2 + y^2 + z^2 +2xy + 2yz + 2zx

  • (X+y)^3 = x^3 + y^3 + 3xy(X+y)

  • (x-y)^3 = x^3 - y^3 - 3xy(x-y)

_______________________

Similar questions