Math, asked by ritesh313, 1 year ago

ex 1 for theta = 30°, verify that sin 2 theta = 2 sin theta cos theta​

Answers

Answered by Atchutha24
65

Step-by-step explanation:

given

theta=30°

apply theta =30° in the given question

that is

sin2(30°)=2sin30°.cos30°

sin60°= 2sin30°.cos30°

apply values

i.e,. √3/2=2(1/2).√3/2

√3/2= 2/2.√3/2

√3/2=1.√3/2

√3/2=√3/2

hence proved that sin2theta = 2 sin theta .cos theta.

Answered by Anonymous
17

Given:

  • θ = 30°

To Find:

  • Prove that  sin2θ = 2 sinθcosθ

Solution:

  • Let LHS = 2sinθ → (1)
  • Substitute the value of theta in equation (1).
  • We get, LHS = sin2(30°) = sin(60°) = \frac{\sqrt{3} }{2}
  • LHS = \frac{\sqrt{3} }{2}
  • Consider RHS = 2sinθcosθ → (2)
  • Substitute the value of theta in equation (2).
  • We get, RHS = 2sin(30°)cos(30°) = 2*(1/2)*(\frac{\sqrt{3} }{2}) = \frac{\sqrt{3} }{2}
  • RHS = \frac{\sqrt{3} }{2}
  • Hence, LHS = RHS
  • ∴ sin2θ = 2 sinθcosθ

Hence Proved.

sin2θ = 2 sinθcosθ.

Similar questions