Math, asked by TusharChowdhary, 9 months ago

ex 3.6 class 10 ncert Q1​

Answers

Answered by sitabachudasma76
9

Answer:

Free NCERT Solutions Class 3 to 12

Install App

Skip to content

Search

 Menu

NCERT Solutions for Class 10 Maths Exercise 3.6

Last Updated: July 13, 2018 by myCBSEguide

myCBSEguide App

Complete Guide for CBSE Students

NCERT Solutions, NCERT Exemplars, Revison Notes, Free Videos, CBSE Papers, MCQ Tests & more.

Download Now

 

NCERT Solutions for Class 10 Maths Exercise 3.6 Class 10 Maths book solutions are available in PDF format for free download. These ncert book chapter wise questions and answers are very helpful for CBSE board exam. CBSE recommends NCERT books and most of the questions in CBSE exam are asked from NCERT text books. Class 10 Maths chapter wise NCERT solution for Maths Book for all the chapters can be downloaded from our website and myCBSEguide mobile app for free.

NCERT solutions for Maths Pair of Linear Equations in Two Variables Download as PDF

NCERT Solutions for Class 10 Maths Pair of Linear Equations in Two Variables

1. Solve the following pairs of equations by reducing them to a pair of linear equations:

(i) 

(ii) 

(iii) + 3y = 14

 − 4y = 23

(iv) 

NCERT Solutions for Class 10 Maths Exercise 3.6

(v) 7x − 2y = 5xy

8x + 7y = 15xy

(vi) 6x + 3y − 6xy = 0

2x + 4y − 5xy = 0

(vii) 

(viii) 

Ans. (i) … (1)

 … (2)

Let = p and = q

Putting this in equation (1) and (2), we get

⇒ 3p + 2q = 12 and 6 (2p + 3q) = 13 (6)

⇒ 3p + 2q = 12 and 2p + 3q =13

⇒ 3p + 2q – 12 = 0 … (3) and 2p + 3q – 13 = 0 … (4)

⇒ 

⇒ 

⇒ 

⇒ p = 2 and q = 3

But = p and = q

Putting value of p and q in this we get

x =  and y = 

(ii) … (1)

 … (2)

Let = p and = q

Putting this in (1) and (2), we get

2p + 3q = 2 … (3)

4p − 9q = −1 … (4)

Multiplying (3) by 2 and subtracting it from (4), we get

4p − 9q + 1 – 2 (2p + 3q − 2) = 0

⇒ 4p − 9q + 1 − 4p − 6q + 4 = 0

⇒ −15q + 5 = 0

⇒ q = 

Putting value of q in (3), we get

2p + 1 = 2 ⇒ 2p = 1⇒ p = ½

Putting values of p and q in (= p and = q), we get

 and 

⇒ 

⇒ x = 4 and y = 9

NCERT Solutions for Class 10 Maths Exercise 3.6

(iii) + 3y = 14 … (1)

 − 4y = 23 … (2) and Let = p … (3)

Putting (3) in (1) and (2), we get

4p + 3y = 14 … (4)

3p − 4y = 23 … (5)

Multiplying (4) by 3 and (5) by 4, we get

3 (4p + 3y – 14 = 0) and, 4 (3p − 4y – 23 = 0)

⇒ 12p + 9y – 42 = 0 … (6) 12p − 16y – 92 = 0 … (7)

Subtracting (7) from (6), we get

9y − (−16y) – 42 − (−92) = 0

⇒ 25y + 50 = 0

⇒ y = 50 – 25 = −2

Putting value of y in (4), we get

4p + 3 (−2) = 14

⇒ 4p – 6 = 14

⇒ 4p = 20⇒ p = 5

Putting value of p in (3), we get

 = 5 ⇒ x = 

Therefore, x =  and y = −2

(iv)  … (1)

 … (2)

Let 

Putting this in (1) and (2), we get

5p + q = 2

⇒ 5p + q – 2 = 0 … (3)

And, 6p − 3q = 1

⇒ 6p − 3q – 1 = 0 … (4)

Multiplying (3) by 3 and adding it to (4), we get

3 (5p + q − 2) + 6p − 3q – 1 = 0

⇒ 15p + 3q – 6 + 6p − 3q – 1 = 0

⇒ 21p – 7 = 0

⇒ p = 

Putting this in (3), we get

5 () + q – 2 = 0

⇒ 5 + 3q = 6

⇒ 3q = 6 – 5 = 1

⇒ q = 

NCERT Solutions for Class 10 Maths Exercise 3.6

Putting values of p and q in (), we get

⇒ 3 = x − 1 and 3 = y – 2

⇒ x = 4 and y = 5

(v) 7x − 2y = 5xy … (1)

8x + 7y = 15xy … (2)

Dividing both the equations by xy, we get

Let = p and = q

Putting these in (3) and (4), we get

7q − 2p = 5 … (5)

8q + 7p = 15 … (6)

From equation (5),

2p = 7q – 5

⇒ p = 

Putting value of p in (6), we get

8q + 7 () = 15

⇒ 16q + 49q – 35 = 30

⇒ 65q = 30 + 35 = 65

⇒ q = 1

Putting value of q in (5), we get

7 (1) − 2p = 5

⇒ 2p = 2⇒ p = 1

NCERT Solutions for Class 10 Maths Exercise 3.6

Putting value of p and q in (= p and = q), we get x = 1 and y = 1

(vi) 6x + 3y − 6xy = 0 … (1)

2x + 4y − 5xy = 0 … (2)

Dividing both the equations by xy, we get

Let = p and = q

Putting these in (3) and (4), we get

6q + 3p – 6 = 0 … (5)

2q + 4p – 5 = 0 … (6)

From (5),

3p = 6 − 6q

⇒ p = 2 − 2q

Putting this in (6), we get

2q + 4 (2 − 2q) – 5 = 0

⇒ 2q + 8 − 8q – 5 = 0

⇒ −6q = −3⇒ q = ½

Putting value of q in (p = 2 – 2q), we get

p = 2 – 2 (½) = 2 – 1 = 1

NCERT Solutions for Class 10 Maths Exercise 3.6

Putting values of p and q in (= p and = q), we get x = 1 and y = 2

(vii)  … (1)

 …(2)

Let 

Putting this in (1) and (2), we get

10p + 2q = 4 … (3)

15p − 5q = −2 … (4)

From equation (3),

2q = 4 − 10p

⇒ q = 2 − 5p … (5)

Putting this in (4), we get

15p – 5 (2 − 5p) = −2

⇒ 15p – 10 + 25p = −2

⇒ 40p = 8⇒ p = 

Putting value of p in (5), we get

q = 2 – 5 () = 2 – 1 = 1

Putting values of p and q in (), we get

⇒ x + y = 5 … (6) and x – y = 1 … (7)

Adding (6) and (7), we get

2x = 6 ⇒ x = 3

Putting x = 3 in (7), we get

3 – y = 1

⇒ y = 3 – 1 = 2

Therefore, x = 3 and y = 2

NCERT Solutions for Class 10 Maths Exercise 3.6

(viii)  … (1)

 … (2)

Let 

Putting this in (1) and (2), we get

p + q =  and 

⇒ 4p + 4q = 3 … (3) and 4p − 4q = −1 … (4)

Adding (3) and (4), we get

8p = 2 ⇒ p = ¼

Putting value of p in (3), we get

4 (¼) + 4q = 3

⇒ 1 + 4q = 3

⇒ 4q = 3 – 1 = 2

⇒ q = ½

Putting value of p and q in , we get

⇒ 3x + y = 4 … (5) and 3x – y = 2 … (6)

Adding (5) and (6), we get

6x = 6 ⇒ x = 1

Putting x = 1 in (5) , we get

3 (1) + y = 4

⇒ y = 4 – 3 = 1

Therefore, x = 1 and y = 1

Answered by Utkarsh070707
14

Answer:

May this help u

Plz plz plz plz plz plz plz Mark as Brainliest

Attachments:
Similar questions