Ex. 3:
Solve x?=1 (using De Moivre's Theorem)
Answers
Answered by
0
Step-by-step explanation:
For integer k,
z4=1+0i
=cos(2πk)+isin(2πk)
=cos(4(π2k))+isin(4(π2k))
=(cos(π2k)+isin(π2k))4
z=cos(π2k)+isin(π2k)
That’s four different values, given by any four consecutive k :
k=0,z=cos0+isin0=1
k=1,z=cosπ2+isinπ2=i
k=2,z=cosπ+isinπ=−1
k=3,z=cos3π2+isin3π2=−i
Similar questions