Math, asked by dikshabezbaruah, 1 month ago

Ex: - Prove that the four
points 4i+5j+k, -(j+k), 3i+9j+4k and 4(I +j+k) are co- planer ​

Answers

Answered by bibhisankumar01
0

Answer:

Yes, the given points are CO-PLANAR.

Step-by-step explanation:

The given points are A = 4i + 5j + k ,B = -(j + k) = 0i - j - k , C = 3i + 9j + 4k and D = -4i + 4j + 4k

So

u = AB = ( 0 - 4 , - 1 - 5 , - 1 - 1 ) = ( - 4 , - 6 , - 2 )

v = AC = ( 3 - 4 , 9 - 5 , 4 - 1 ) = ( - 1 , 4 , 3 )

w = AD = ( -4 - 4 , 4 - 5 , 4 - 1 ) = ( -8 , - 1 , 3 )

The given points will be CO-PLANAR if

[ u v w ] = 0

So

[ u v w ]

\begin{gathered}=\left[\begin{array}{ccc}-4&-6&-2\\-1&4&3\\-8&-1&3\end{array}\right] \\\\=-4(12+3)-(-6)(-3+24)+(-2)(1+32)\\=-4(15)+6(21)-2(33)\\=-60+126-66\\=0\end{gathered}

=

−4

−1

−8

−6

4

−1

−2

3

3

=−4(12+3)−(−6)(−3+24)+(−2)(1+32)

=−4(15)+6(21)−2(33)

=−60+126−66

=0

Clearly [ u v w ] = 0

So the given points are CO-PLANAR.

Similar questions