Ex: - Prove that the four
points 4i+5j+k, -(j+k), 3i+9j+4k and 4(I +j+k) are co- planer
Answers
Answered by
0
Answer:
Yes, the given points are CO-PLANAR.
Step-by-step explanation:
The given points are A = 4i + 5j + k ,B = -(j + k) = 0i - j - k , C = 3i + 9j + 4k and D = -4i + 4j + 4k
So
u = AB = ( 0 - 4 , - 1 - 5 , - 1 - 1 ) = ( - 4 , - 6 , - 2 )
v = AC = ( 3 - 4 , 9 - 5 , 4 - 1 ) = ( - 1 , 4 , 3 )
w = AD = ( -4 - 4 , 4 - 5 , 4 - 1 ) = ( -8 , - 1 , 3 )
The given points will be CO-PLANAR if
[ u v w ] = 0
So
[ u v w ]
\begin{gathered}=\left[\begin{array}{ccc}-4&-6&-2\\-1&4&3\\-8&-1&3\end{array}\right] \\\\=-4(12+3)-(-6)(-3+24)+(-2)(1+32)\\=-4(15)+6(21)-2(33)\\=-60+126-66\\=0\end{gathered}
=
⎣
⎢
⎡
−4
−1
−8
−6
4
−1
−2
3
3
⎦
⎥
⎤
=−4(12+3)−(−6)(−3+24)+(−2)(1+32)
=−4(15)+6(21)−2(33)
=−60+126−66
=0
Clearly [ u v w ] = 0
So the given points are CO-PLANAR.
Similar questions