Math, asked by sudhasrivastavadb61, 11 months ago

ExA
prove the following statements
cos^4 A - sin^4 A+1=2 cos^2 A​

Answers

Answered by kaushik05
60

 \huge \red{ \mathfrak{solution}}

To prove :

 \cos^{4} ( \alpha )  -  { \sin }^{4} \alpha  + 1 = 2 { \cos }^{{2}  }  \alpha

LHS

 \leadsto \:  {cos}^{4}  \alpha  -  {sin}^{4}  \alpha  + 1 \\  \\  \leadsto \:  {( {cos}^{2} \alpha  })^{2}  -  {sin}^{4}  \alpha  + 1 \\  \\  \leadsto \: (1 -  {sin}^{2}  \alpha ) ^{2}   -  {sin}^{4}  \alpha  + 1 \\  \\  \leadsto \: 1 +  {sin}^{4}  \alpha \:  - 2 {sin}^{2}  \alpha   -  {sin}^{4}  \alpha  + 1 \\  \\  \leadsto \: 2 - 2 {sin}^{2}   \alpha  \\  \\  \leadsto \: 2(1 -  {sin}^{2}  \alpha ) \\  \\  \leadsto2 {cos}^{2}  \alpha

LHS = RHS

  \huge \: \boxed{ \mathfrak{proved}}

Answered by Anonymous
75

Solution:

Given:

➜ Prove the following statements

cos^4 A - sin^4 A+1=2 cos^2 A

To Prove:

➜ cos² (a) - sin⁴ a + 1

LHS:

➜ cos² a - sin⁴ a + 1

➜ (cos² a)² - sin⁴ a + 1

➜ (1 - sin² a) ² - sin² a + 1

➜ 1 + sin⁴ a - 2sin² a - sin⁴ a + 1

➜ 2 - 2 sin² a

➜ 2(1 - sin² a)

➜ 2 cos² a

LHS = RHS

Know Terms:

  • LHS => Left hand side.
  • RHS => Right hand side.

#AnswerWithQuality

#BAL

Similar questions