Math, asked by nipun2004, 11 months ago

Exact value of sec 10° - tan 10º – tan 40° is equal to​

Answers

Answered by athews2005
5

Answer:

sec 10 = 1/cos 10

tan 10 = SIN 10/cos 10

sec 10 - tan 10 = 1-sin 10/cos 10

tan 40 = sin 40/ cos 40

1-sin 10/ cos 10 - sin 40 / cos 40

Answered by Swarup1998
4

sec10° - tan10° - tan40° = 0

Concept to be used:

secθ = \dfrac{1}{cos\theta}

tanθ = \dfrac{sin\theta}{cos\theta}

sin(A + B) = sinA cosB + cosA sinB

sin(90° - θ) = cosθ

cos(90° - θ) = sinθ

Step-by-step explanation:

Now, sec10° - tan10° - tan40°

= \dfrac{1}{cos10^{o}}-\dfrac{sin10^{o}}{cos10^{o}}-\dfrac{sin40^{o}}{cos40^{o}}

= \dfrac{cos40^{o}-sin10^{o}cos40^{o}-sin40^{o}cos10^{0}}{cos10^{o}cos40^{o}}

= \dfrac{cos40^{o}-(sin10^{o}cos40^{o}+sin40^{o}cos10^{0})}{cos10^{o}cos40^{o}}

= \dfrac{cos40^{o}-sin(10^{o}+40^{o})}{cos10^{o}cos40^{o}}

= \dfrac{cos40^{o}-sin50^{o}}{cos10^{o}cos40^{o}}

= \dfrac{cos40^{o}-sin(90^{o}-40^{o})}{cos10^{o}cos40^{o}}

= \dfrac{cos40^{o}-cos40^{o}}{cos10^{o}cos40^{o}}

= \dfrac{0}{cos10^{o}cos40^{o}}

= 0

Read more on Brainly.in

If tanA=x/y prove that: m.sinA+ n.cosA =root m2+n2

https://brainly.in/question/15817313

Solve 7{cos}^{2}\theta+3{sin}^{2}\theta=4.

https://brainly.in/question/9927717

#SPJ3

Similar questions