Math, asked by dmepraga, 5 months ago

Exam Time : 00:03:00 Hrs Total Marks : 50

10 x 1 = 10

If  ,then

(a) (b) (c) (d)

∫ f(x)dx = g(x) + c ∫ f(x)g (x)dx



∫ (f(x)) dx

2 ∫ f(x)g(x)dx ∫ f (x)g(x)dx

′ ∫ (g(x)) dx

2

If ,then the value of k is

(a) log 3 (b) -log 3 (c) (d)

∫ dx = k( ) + c

3

1

x

x2 3

1

x



1

log3

1

log3

If  , then f(x) is

(a) (b) (c) x + 4x + 6x + c (d)

∫ f (x) dx = (x − 1) + c

′ e

x

2

e

x

2

2x − + x + c

3 x

2

2 + 3 + 4x + c

x

3

2 x

2 3  2  − + x + c

2x

3

3 x

3

The gradient (slope) of a curve at any point (x, y) is . If the curve passes through the point (2, 7),

then the equation of the curve is

(a) (b) (c) y=x +3x+4 (d) y=x -3x+6

x −4

2

x2

y = x + + 3

4

x y = x + + 4

4

x

2 2

is

(a) cot(xe )+c (b) sec(xe )+c (c) tan(xe )+c (d) cos(xe )+c

∫ dx

e (1+x) x

cos

2(xe

x )

x x x x

is

(a) (b) (c) (d)

∫ dx

√tan x

sin 2x

tan x + c −−−−− √ 2 tan x + c −−−−− √ + c

1

2

tan x −−−−− √ + c

1

4

tan x −−−−− √

is

(a) (b) (c) (d)

∫ sin xdx

3

cos x − + c

−3

4

cos 3x

12

cos x + + c

3

4

cos 3x

12

cos x + + c

−3

4

cos 3x

12

sin x − + c

−3

4

sin 3x

12

is

(a) x+c (b) (c) (d)

∫ dx

e

6logx−e

5logx

e

4logx−e

3logx

+ c

x

3

3 + c

3

x3 + c

1

x2

is

(a) tan (sin x)+c (b) 2sin (tan x)+c (c) tan (cos x)+c (d) sin (tan x)+c

∫ dx

sec x

√cos2x

-1 -1 -1 -1

is

(a) x +c (b) 2x +c (c) (d)

∫ tan dx

−1 1−cos 2x

1+cos 2x

−−−−−− √

2 2 + c

x

2

2 − + c​

Answers

Answered by Anonymous
1

Answer:

sorry couldn't understand the question....

good evening...

tc... ^ω^

Similar questions