Math, asked by kikimgangte7, 3 months ago

examine the continuity of the function f(x)=2x^(2)-1 at x=-2​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \sf \bull \: f(x) =  {2x}^{2}  - 1

\large\underline{\sf{To\:discuss - }}

 \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \bull \sf \:  \: The \:  continuity \: of \: f(x) \: at \: x =  - 2

\large\underline{\sf{Solution-}}

Definition of Continuity :-

A function f(x) is said to be Continuous at x = a iff

 \sf \: f( a) =  \:\lim_{x \: \to \: a^-}f(x) =  \: \lim_{x \: \to \: a^ + }f(x)

Now,

Given that

 \sf \: f(x) =  {2x}^{2}  - 1

So,

\rm :\longmapsto\:f( - 2) = 2 {( - 2)}^{2}  - 1

\bf :\longmapsto\:f( - 2) = 8 - 1 = 7 -  - (1)

Now,

Left Hand Limit at x = - 2

\rm :\longmapsto\:\sf \:\lim_{x \: \to \:  - 2^-}f(x)

 :\longmapsto\:\sf  \:  =  \: \:\lim_{x \: \to \:  -  \: 2^-}( {2x}^{2}  - 1)

 \bf \: Put  \: x \:  =  - 2 - h , As \: x \to \:  - 2 \: so \: h \to \: 0

\longmapsto\:\sf \: \:  =  \: \lim_{h \: \to \: 0}\bigg(2 {( - 2 - h)}^{2}  - 1 \bigg)

 \rm :\longmapsto\: \:  =  \: 2 {( - 2)}^{2}  - 1

\rm :\longmapsto\: =  \: 8 - 1

\rm :\longmapsto\: =  \: 7 \:  -  - (2)

Now,

Right Hand Limit at x = - 2

\longmapsto\:\sf \:\lim_{x \: \to \: 2^ + }f(x)

 :\longmapsto\:\sf  \:  =  \: \:\lim_{x \: \to \:  -  \: 2^ + }( {2x}^{2}  - 1)

 \bf \: Put  \: x \:  =  - 2  +  h , As \: x \to \:  - 2 \: so \: h \to \: 0

\longmapsto\:\sf \: \:  =  \: \lim_{h \: \to \: 0}\bigg(2 {( - 2  +  h)}^{2}  - 1 \bigg)

 \rm :\longmapsto\: \:  =  \: 2 {( - 2)}^{2}  - 1

\rm :\longmapsto\: =  \: 8 - 1

\rm :\longmapsto\: =  \: 7 \:  -  - (3)

From equation (1), (2) and (3), we concluded that

 \sf \: f( - 2) =  \:\lim_{x \: \to \: 2^-}f(x) =  \: \lim_{x \: \to \: 2^ + }f(x)

\bf\implies \:f(x) =  {2x}^{2}  - 1 \: is \: continuous \: at \: x =  - 2

Additional Information :-

A function f(x) is said to be continuous on a closed interval [a, b] if the following conditions are satisfied:

  • f(x) is continuous from the right at a;

  • f(x) is continuous from the left at b.

If the function f and g are continuous at c then

  • f + g is continuous at c;

  • f - g is continuous at c;

  • f.g is continuous at c;

   

  • f/g is continuous at c if g(c) ≠ 0 and is discontinuous at c if g(c) = 0

Similar questions