Math, asked by nelsonamara203, 1 day ago

Examine the continuity or discontinuity of the given function:

Attachments:

Answers

Answered by mathdude500
3

Given Question :- Examine the continuity or discontinuity of

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{5x + 2, \:  \: x \leqslant 0} \\ &\sf{ \:  \:  \:  \:  \:  \: 6x, \:  \: x > 0} \end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given function is

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{5x + 2, \:  \: x \leqslant 0} \\ &\sf{ \:  \:  \:  \:  \:  \: 6x, \:  \: x > 0} \end{cases}\end{gathered}\end{gathered}

Consider \rm \: f(0) = 5 \times 0 + 2 = 2

Consider, Left Hand Limit

\rm \: \displaystyle\lim_{x \to 0^-}\rm f(x) \\

\rm \: =  \:  \displaystyle\lim_{x \to 0^-}\rm (5x + 2) \\

To evaluate this limit, we use method of Substitution.

\rm \:Put\:x=0-h,\:\: as\:\: x \to 0, \:\:so\:\:h \to 0

\rm \: =  \:  \displaystyle\lim_{h \to 0}\rm (5(- h) + 2) \\

\rm \:  =  \: 0 + 2 \\

\rm \:  =  \:  2 \\

So,

\rm\implies \:\displaystyle\lim_{x \to 0^-}\rm f(x) \:  =  \: 2 \\

Consider, Right Hand Limit

\rm \: \displaystyle\lim_{x \to 0^ + }\rm f(x) \\

\rm \:  =  \: \displaystyle\lim_{x \to 0^ + }\rm 6x \\

So, to evaluate this limit, we use method of Substitution.

\rm \:Put\:x=0+h,\:\: as\:\:x \to 0, \:\:so\:\:h \to 0

\rm \:  =  \: \displaystyle\lim_{h \to 0 }\rm 6(h)\\

\rm \:  =  \: 0 \\

\rm\implies \:\displaystyle\lim_{x \to 0^ + }\rm f(x) \:  =  \: 0 \\

So, from above we concluded that

\rm\implies \:\rm \: f(0) = \displaystyle\lim_{x \to 0^-}\rm f(x) \:  \ne \: \displaystyle\lim_{x \to 0^ + }\rm f(x) \\

\rm\implies \:\rm \: f(x) \: is \: not \: continuous \: at \: x \:  =  \: 0  \\

Similar questions