Math, asked by surajkumar84472, 9 months ago

examine the convergence of the series 1/1.3 +2/3.5 + 3/5.7 + .....

Answers

Answered by amitnrw
4

Given : 1/1.3 +2/3.5 + 3/5.7 + .

To Find : examine the convergence of the series

Solution:

1/1.3  + 2/3.5  + 3/5.7 + ..

= n/(2n-1)(2n + 1)

n/(2n-1)(2n + 1)  = A/(2n -1)  + B/(2n + 1)

=> n = A(2n +1) + B(2n - 1)

=> 1/2 = A(2) = >  A= 1/4

  -1/2 = B(-2) =>  B = 1/4

1/4 ( 1/(2n + 1)  + 1/(2n - 1) )

Ratio Test  

L = Lim n→ ∞  | aₙ₊₁ /aₙ|

=  Lim n→ ∞   {1/(2n + 3)  + 1/(2n + 1) } /(  1/(2n + 1)  + 1/(2n - 1) )

=   Lim n→ ∞ (4n + 4)(2n + 1)(2n - 1)/(2n + 3) (2n + 1)4n

= Lim n→ ∞ (4n + 4) (2n - 1)/(2n + 3)4n

=  Lim n→ ∞ ( 4 + 4/n) (2 - 1/n)/(2 + 3/n) 4

=  ( 4 + 0)(2 - 0)/(2 + 0) 4

= 4 (2)/(2)(4)

= 1

if L < 1 then convergent  ,  if L > 1 then divergent

as L = 1  no conclusion can be made about convergence or divergence

Lets check

Lim n→ ∞  aₙ

 Lim n→ ∞  1/4 ( 1/(2n + 1)  + 1/(2n - 1) )

= 0

Hence series is convergent

Learn More:

2. a) Test the convergence of the following series.1/6-1/11+1/16-4 ...

https://brainly.in/question/13373151

brainly.in/question/32296921

What is the greatest integer not exceeding the sum sigma (n=1 till ...

brainly.in/question/11760086

Similar questions