Math, asked by ritu18ch107, 8 months ago

Example 1. Use False-Position method to find a real root of f(x) = x3 - 2x - 5 = 0 correct to
three decimal places.
(H.P.U. 2008, 09)
Sol Given equation is​

Answers

Answered by knjroopa
3

Step-by-step explanation:

Given . Use False-Position method to find a real root of f(x) = x3 - 2x - 5 = 0 correct to three decimal places.

  • So we have
  •                        f(x) = x^3 – 2x – 5 = 0
  •   First we need to find the root so we have
  •                        f(1) = 1^3 – 2(1) – 5  
  •                              = 1 – 2 – 5
  •                              = - 6
  •                         f(2) = 2^3 – 2(2) – 5
  •                                = 8 – 4 – 5
  •                                = - 1
  •                        f(3) = 3^3 – 2(3) – 5
  •                                = 27 – 6 – 5
  •                                 = 27 – 11
  •                                 = 16
  • So the root lies between 2 and 3 (one negative and other positive)
  • Now using false position method
  •                Now x1 = 2 and x2 = 3
  •         f(x1) = f(2) = - 1
  •        f(x2) = f(3) = 16
  •  So x3 = x1 –  x2 – x1 / f(x2) – f(x1) x f(x1)
  •       x3 = 2 -  (3 – 2) / 16 – (- 1) x -1
  •          = 2 -  1 / 17 (-1)
  •           = 2 + 1/17
  •            = 35 / 17
  •            = 2.0588
  • Now f(2.0588) = (2.0588)^3 – 2(2.0588) – 5
  •                          = - 0.39105
  • So the root lies between 2.0588 and 3
  •    Now x4 = 2.0588 – (3 – 2.0588 / 16 – (- 0.39105)
  •                   = 2.08125
  • Next will be x5 = 2.0862
  • So repeating the process we get x9 = 2.0943 which is correct to three decimal places.

Reference link will be

https://brainly.in/question/33160190

Answered by taruna18patro
2

Step-by-step explanation:

Given:-

Use False-Position method to find the real roots of f(x)=

 {x}^{3}  - 2x - 5

First, we need to find the root so we have,

f(1)=

 {1}^{3}  - 2(1) - 5

= -6

f(2)=

 {2}^{3}  - 2 (2) - 5

=-1

f(3)=

 {3}^{3}  - 2(3) - 5

=16

So the roots lies between 2 and 3 (one is positive and other is negative).

Take a = 2, b = 3.

  x1 = ( )– ( )

( )– ( )

af b bf a

f b fa

= 2(16) – 3(–1)

16 – (–1)

=

35

17

= 2.058823529.

f (x1) = f (2.058823529) = – 0.390799917 < 0.

Therefore the root lies between 0.058823529 and 3. Again, using the formula, we get the

second approximation as,

x2 = 2.058823529(16) – 3(–0.390799917)

16 – (–0.390799917)

= 2.08126366

Proceeding like this, we get the next approximation as,

x3 = 2.089639211,

x4 = 2.092739575,

x5 = 2.09388371,

x6 = 2.094305452,

x7 = 2.094460846

Similar questions