Math, asked by ruchibaby, 10 months ago

Example 12: Find the value of k if (x - 2) is a
factor of x3 + 2x2 - kx + 10. Hence, determine
whether (x + 5) is also a factor.​

Answers

Answered by mysticd
3

 Let \: p(x) = x^{3}+2x^{2}-kx+10

i) Given \:(x-2) \:is \:a \:factor \:of \: p(x) \: then

 p(2) = 0

 \implies 2^{3} + 2\times 2^{2} - k \times 2 + 10 = 0

 \implies 8 + 8 - 2k + 10 = 0

 \implies 26 - 2k = 0

 \implies - 2k = -26

 \implies k = \frac{-26}{-2}

 \implies k = 13

 \therefore \red { Value \:of \: k } \green {= 13}

 ii ) Find \: p(-5) = (-5)^{3} + 2\times (-5)^{2} - 13 \times (-5) + 10

 = -125 + 50 + 65 + 10

 = -125 + 125

 = 0

 p(-5) = 0

 \therefore\green { (x+5) \:is \: a \: factor \:of \:p(x)}

•••♪

Similar questions