Physics, asked by prashantchp2305, 7 months ago

Example 19.5. A double shoe brake, as shown in Fig. 19.10,
is capable of absorbing a torque of 1400 N-m. The diameter of the
brake drum is 350 mm and the angle of contact for each shoe is 100°.
If the coefficient of friction between the brake drum and lining is
0.4 ; find 1. the spring force necessary to set the brake ; and 2. the
width of the brake shoes, if the bearing pressure on the lining
material is not to exceed 0.3 N/mm2.​

Answers

Answered by amratsekhu98939893
0

Answer:

bzisNJsisNJis sughhaosbsisbps

Answered by dinesh24987
0

Answer:

b=144.2

Explanation:

=1400N–m=1400×10

3

N–mm;d = 350 mm or r = 175 mm ; 2 \theta=100^{\circ}=100 \times \pi / 180=1.75 rad ;2θ=100

=100×π/180=1.75rad;; \mu=0.4 ; p_{b}=0.3 N / mm ^{2}μ=0.4;p

b

=0.3N/mm

2

1. Spring force necessary to set the brake

Let S = Spring force necessary to set the brake.

R_{ N 1} \text { and } F_{t 1}R

N1

and F

t1

= Normal reaction and the braking force on the right hand side shoe, and

R_{ N 2} \text { and } F_{t 2}R

N2

and F

t2

= Corresponding values on the left hand side shoe.

Since the angle of contact is greater than 60^{\circ}60

, therefore equivalent coefficient of friction,

\mu^{\prime}=\frac{4 \mu \sin \theta}{2 \theta+\sin 2 \theta}=\frac{4 \times 0.4 \times \sin 50^{\circ}}{1.75+\sin 100^{\circ}}=0.45μ

=

2θ+sin2θ

4μsinθ

=

1.75+sin100

4×0.4×sin50

=0.45

Taking moments about the fulcrum O_{1},O

1

,, we have

S \times 450=R_{ N 1} \times 200+F_{t 1}(175-40)=\frac{F_{t 1}}{0.45} \times 200+F_{t 1} \times 135=579.4 F_{t 1}S×450=R

N1

×200+F

t1

(175−40)=

0.45

F

t1

×200+F

t1

×135=579.4F

t1

\ldots\left(\text { Substituting } R_{ N 1}=\frac{F_{t 1}}{\mu^{\prime}}\right)…( Substituting R

N1

=

μ

F

t1

)

\therefore \quad F_{t 1}=S \times 450 / 579.4=0.776 S∴F

t1

=S×450/579.4=0.776S

Again taking moments about O_{2},O

2

,, we have

S \times 450+F_{t 2}(175-40)=R_{ N 2} \times 200=\frac{F_{t 2}}{0.45} \times 200=444.4 F_{t 2}S×450+F

t2

(175−40)=R

N2

×200=

0.45

F

t2

×200=444.4F

t2

\ldots\left(\text { Substituting } R_{ N 2}=\frac{F_{t 2}}{\mu^{\prime}}\right)…( Substituting R

N2

=

μ

F

t2

)

444.4 F_{t 2}-135 F_{t 2}=S \times 450 \quad \text { or } \quad 309.4 F_{t 2}=S \times 450444.4F

t2

−135F

t2

=S×450 or 309.4F

t2

=S×450

\therefore \quad F_{t 2}=S \times 450 / 309.4=1.454 S∴F

t2

=S×450/309.4=1.454S

We know that torque capacity of the brake \left(T_{ B }\right)(T

B

),

1400 \times 10^{3}=\left(F_{t 1}+F_{t 2}\right) r=(0.776 S+1.454 S) 175=390.25 S1400×10

3

=(F

t1

+F

t2

)r=(0.776S+1.454S)175=390.25S

\therefore∴ S=1400 \times 10^{3} / 390.25=3587 NS=1400×10

3

/390.25=3587N

2. Width of the brake shoes

Let b = Width of the brake shoes in mm.

We know that projected bearing area for one shoe,

A_{b}=b(2 r \sin \theta)=b\left(2 \times 175 \sin 50^{\circ}\right)=268 b mm ^{2}A

b

=b(2rsinθ)=b(2×175sin50

)=268bmm

2

Normal force on the right hand side of the shoe,

R_{ N 1}=\frac{F_{t 1}}{\mu^{\prime}}=\frac{0.776 \times S}{0.45}=\frac{0.776 \times 3587}{0.45}=6186 NR

N1

=

μ

F

t1

=

0.45

0.776×S

=

0.45

0.776×3587

=6186N

and normal force on the left hand side of the shoe,

R_{ N 2}=\frac{F_{t 2}}{\mu^{\prime}}=\frac{1.454 \times S}{0.45}=\frac{1.454 \times 3587}{0.45}=11590 NR

N2

=

μ

F

t2

=

0.45

1.454×S

=

0.45

1.454×3587

=11590N

We see that the maximum normal force is on the left hand side of the shoe. Therefore we shall find the width of the shoe for the maximum normal force i.e. R_{ N 2}R

N2

.

We know that the bearing pressure on the lining material \left(p_{b}\right)(p

b

),

0.3=\frac{R_{ N 2}}{A_{b}}=\frac{11590}{268 b }=\frac{43.25}{ b }0.3=

A

b

R

N2

=

268b

11590

=

b

43.25

\therefore∴ b = 43.25 / 0.3 = 144.2 mm

Similar questions