Math, asked by akanksha142729, 8 months ago

Example 2 : Find the area of the sector of a circle
with radius 4 cm and of angle 30°. Also, find the area
of the corresponding major sector (Use = 3.14).​

Answers

Answered by rlrejisha
4

Answer:

I hope this is ur req answer..

Attachments:
Answered by SarcasticL0ve
10

\sf Here \begin{cases} & \sf{ \theta = 30^\circ }  \\ & \sf{Radius,\; r = 4\;cm}  \end{cases}\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━

Therefore, \\ \\

Area of sector OAPB,

\qquad\quad\sf \dfrac{ \theta}{360} \times \pi r^2\\ \\

:\implies\sf \dfrac{30}{360} \times 3.14 \times 4 \times 4\\ \\

:\implies\sf \dfrac{3.14 \times 4}{3}\\ \\

:\implies{\underline{\boxed{\sf{\pink{4.153\;cm^2}}}}}\;\bigstar\\ \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let A be the area of corresponding major sector. Then, \\ \\

A = Area of sector OAQB \\ \\

A = Area of circle - Area of corresponding minor sector \\ \\

:\implies\sf A = \pi r^2 - \dfrac{ \theta}{360} \times \pi r^2\\ \\

:\implies\sf A = \pi r^2 \bigg\lgroup\sf 1 - \dfrac{ \theta}{360}\bigg\rgroup\\ \\

:\implies\sf A = 3.14 \times 4 \times 4 \bigg\lgroup\sf 1 - \dfrac{30}{360}\bigg\rgroup\\ \\

:\implies\sf A = 3.14 \times 4 \times 4 \times \cancel{ \dfrac{330}{360}}\\ \\

:\implies\sf A = 3.14 \times 4 \times 4 \times \dfrac{11}{12}\\ \\

:\implies\sf A = \dfrac{3.14 \times 44}{3}\\ \\

:\implies{\underline{\boxed{\sf{\purple{A = 46.05\;cm^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Area\;of\;Major\;sector\;is\; \bf{46.05\;cm^2}.}}}

Attachments:
Similar questions