Math, asked by mbanodhia, 5 months ago

Example 2. Find the nth derivative of ex log x.

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

The n th derivative of

 \sf  {e}^{x}  \log x

EVALUATION

Here the given function is

 \sf  f(x) = {e}^{x}  \log x

 \sf \: Let   \:  \: \:  u = {e}^{x}  \:  \: and \:  \: v =  \log x

Then f(x) = uv

Now

 \sf \:u_n = {e}^{x}  \:  \: for \: all \: n

Again

 \displaystyle \sf \: v_n =  \frac{ {( - 1)}^{n - 1}  \: (n - 1)!}{ {x}^{n} }

Now f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

\displaystyle \sf \:  {f}^{n}(x) =  (uv) _n =  \displaystyle  \sf\sum\limits_{r = 0}^{n}  \:   {}^{n} C_ru_{n - r}v_r

\displaystyle \sf \implies  {f}^{n}(x)  =  \displaystyle  \sf\sum\limits_{r = 0}^{n}  \:   {}^{n} C_ru_{n - r}v_r

\displaystyle \sf \implies  {f}^{n}(x)  =  {e}^{x}  \log x +  \displaystyle  \sf\sum\limits_{r=1}^{n}  \:   {}^{n} C_r \:  {e}^{x}  \:  \frac{ {( - 1)}^{r - 1}  \: (r - 1)!}{ {x}^{r} }

\displaystyle \sf \implies  {f}^{n}(x)  = {e}^{x}  \log x +  {e}^{x} \:   \displaystyle  \sf\sum\limits_{i=1}^{n}  \:   {}^{n} C_r \:  \frac{ {( - 1)}^{r - 1}  \: (r - 1)!}{ {x}^{r} }

\displaystyle \sf \implies  {f}^{n}(x)  = {e}^{x}  \bigg \{ \log x + n {x}^{ - 1} - {}^{n} C_2 {x}^{ - 2}  + .. \: .. \bigg \}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Laplace transform (D²-3D+2)y=4 given y(0)=2 and y’(0)=3

https://brainly.in/question/32934012

2. the fourier cosine transform of the function f(t) is

https://brainly.in/question/34795825

Similar questions