Math, asked by nathu1081970, 4 months ago

Example 2. If z1 and z2 (≠0) are two complex numbers such that |z1 - z2/ z1 + z2| = 1, then

Answers

Answered by mathdude500
4

\bf \large\underbrace\orange{Question:}

\bf \:If \: z_1 \: and \: z_2  \: are \: two \: complex \: numbers \: such \: that

\bf \: |\dfrac{z_1 - z_2 }{z_1 + z_2 } |  = 1 \: then

\bf \large\underbrace\orange{Answer:}

\bf\underbrace\orange{Identity \:  Used :}

\bf \:If |z - z_1|  =  |z - z_2 |

\bf\implies \:z \: lies \: on \: perpendicular \: bisector \:

\bf \:of \: A (z_1) \: and \: B (z_2 )

\bf\underbrace\orange{Solution:}

\bf \: |\dfrac{z_1 - z_2 }{z_1 + z_2 } |  = 1 \:

\bf\implies \:\dfrac{ |z_1 - z_2 | }{ |z_1 + z_2 | }  = 1

\bf\implies \: |z_1 - z_2 |  =  |z_1 + z_2 |

\bf\implies \: |\dfrac{z_1}{z_2 }  - 1|  =  |\dfrac{z_1}{z_2 }  + 1|

\bf\implies \: |\dfrac{z_1}{z_2 }  - (1 + 0i)|  =  |\dfrac{z_1}{z_2 }   - ( -  1 + 0i)|

\bf\implies \:\dfrac{z_1}{z_2 }  \: lies \: on \: perpendicular \: bisector

\bf \:of \: line \: segment \: A (-1 + 0i) \: and \: B (1 + 0i)

\bf\implies \:\dfrac{z_1}{z_2 }  = ki \: where \: k \: ∈ R

\bf\implies \:z_1 = ikz_2  \: where \: k∈ R

_____________________________________________

Similar questions