Math, asked by 14295, 7 months ago


Example 2: Two tangents TP and TQ are drawn
to a circle with centre O from an external point T.
Prove that Z PTQ = 2 Z OPQ.​

Answers

Answered by vashushubu77
16

We know that length of taughts drawn from an external point to a circle are equal.....

∴ TP=TQ−−−(1)

 4 \: ∴ ∠TQP \: = \: ∠TPQ \: \\  \\ (angles  \: of  \: equal sides  \: are \:  equal) \\ −−−(2)

Now, PT is tangent and OP is radius.........

∴  OP \: ⊥ \: TP \\  \\ (Tangent  \: at \:  any  \: point \:  pf\\ \:circle \:  is \:  perpendicular \: to \: the\\ \:  radius \: through \: point  \: of \:  cant  \: act)

∴ ∠OPT=90

or \\ ∠OPQ+∠TPQ= {90}^{0}

  or\\ ∠TPQ=90^{0} −∠OPQ−−−(3)

In △PTQ

∠TPQ \: + \: ∠PQT \: + \: ∠QTP  \\ = 180^{0}  \\ (Sum \:  of \:  angles \:  triangle  \: is \:  180^{0})

or,  \\ 90^{0} −∠OPQ+∠TPQ+∠QTP \\ =180

or, \\  2(90^{0} −∠OPQ)+∠QTP=180^{0} \\   [from (2) and (3)]

or,  \\ 180^{0} −2∠OPQ+∠PTQ=180^{0}

∴ 2∠OPQ=∠PTQ \:  \\ −−−−  proved

HOPE IT HELPS YOU....

Similar questions