Math, asked by inirahkannan, 6 months ago

Example 3: Find the number whose logarithm is -2.4678.​

Answers

Answered by TakenName
5

The logarithm is an inverse function of an exponential function.

So we can find the relation between logarithm and exponential.

\boxed{\sf{y=f(x)}\leftrightarrow x=f^{-1}(y)}

Let \sf{f(x)=e^x}

Then \sf{f^{-1}(x)=ln\:x}

Let the complex number be y.

\sf{ln\:y=-2.4678}

\sf{\implies f^{-1}(y)=-2.4678}

\boxed{\sf{y=f(x)}\leftrightarrow \underline{\bold{x=f^{-1}(y)}}}

\sf{\implies y=f(-2.4678)}

\sf{\implies y=e^{-2.4678}}

\bold{\therefore y=\dfrac{1}{e^{2.4678}} }}

Similar questions