Physics, asked by tanujababu, 1 year ago

Example 3:
Find the position and nature of the image of an object of height 3 cm, when placed 60 cm from a convex
mirror of focal length 15 cm​

Answers

Answered by INFINITY019
3

Answer:

position : between f and c

nature : 1. : real image

2. : inverted

3. : diminished

Answered by Anonymous
27

\star \; {\underline{\boxed{\orange{\pmb{\textbf{\textsf{ Given \;}}}}}}}

\begin{gathered} \\\end{gathered}

  • u = -60cm

  • f = 15

\begin{gathered} \\\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\purple{\pmb{\textbf{\textsf{ To\;Find \; :- }}}}}}}\end{gathered}

\begin{gathered} \\\end{gathered}

  • v = ?

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

\begin{gathered} \\\end{gathered}\star \;{\underline{\boxed{\red{\pmb{\textbf{\textsf{ SoluTion \; :- }}}}}}}

\begin{gathered} \\ \\\end{gathered}

❍ Formula Used

{\underline{\boxed{\pmb{\sf{ \: \sf \:  Mirror  \: formula = \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{5}}}}}}

\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\dag \;{\underline{\underline{\sf{ \; Calculating \; the \; Distance}}}}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{   \frac{1}{v} = \frac{1}{60} +  \frac{1}{15}  }\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{   \frac{1}{v} = \frac{5}{60 }  }\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{   \frac{1}{v} = \frac{5}{60 }  }\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{   \frac{1}{v} = \frac{1}{12 }  }\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{   v \:  =  \: 12  }\end{gathered}

\begin{gathered} \qquad \; \dashrightarrow \; \;{\underline{\boxed{\red{\pmb{\frak { Image Distance=12 }}}}}} \; \bigstar \\ \\ \end{gathered}

\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\dag \;{\underline{\underline{\sf{ \; Calculating \; the \; Magnification}}}}\end{gathered}

\begin{gathered} \sf \implies{m = - \dfrac{12}{ - 60} } = \dfrac{ h_{2}}{ 3 } \\ \\ \implies \sf\dfrac{12}{60} = \frac{ h_{2} }{3} \\ \\ \implies \sf h_{2} = \dfrac{12}{60} \times 3 \\ \\ \sf \implies h_{2} = \frac{3}{5} \\ \\ \sf \implies h_{2} = 0.6\end{gathered} \\  \\  \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\red{\pmb{\frak { Magnification = 0.6cm}}}}}} \; \\ \\ \end{gathered}

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

∴ Virtual and erect image of size 0.6 cm will be formed at a distance of 12 cm behind the mirror .

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

Similar questions