Example 4.74. Trace the curve x3 + y3 = 3axy
3a sin cos 0
sin + cos e
Answers
Answered by
5
Answer:
Answer
Changing to polar form (by putting x=rcosθ,y=rsinθ)
⇒(rcosθ)
3
+(rcosθ)
3
=3arcosθrsinθ
⇒r
3
cos
3
θ+r
3
cos
3
θ=3ar
2
cosθsinθ
⇒r
3
(cos
3
θ+sin
3
θ)=3ar
2
cosθsinθ
⇒r=
(cos
3
θ+sin
3
θ)
3acosθsinθ
Put r=0,sinθcosθ=0
∴θ=0,
2
π
, which are the limits of integration for its loop.
∴ Area of the loop=
2
1
∫
0
2
π
r
2
dθ
=
2
1
∫
0
2
π
(cos
3
θ+sin
3
θ)
9a
2
sinθcosθ
dθ
Divide numerator and denominator by cos
6
θ we get
=
2
9a
2
∫
0
2
π
(1+tan
3
θ)
2
tan
2
θsec
2
θ
dθ
Put 1+tan
3
θ=t and 3tan
2
θsec
2
θdθ=dt we get
=
2
3a
2
∫
1
∞
t
2
dt
=
2
3a
2
∣
∣
∣
∣
∣
−1
t
−1
∣
∣
∣
∣
∣
1
∞
=
2
3a
2
(−0+1)
=
2
3a
2
Similar questions